Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2024 | Story Valentino Ndaba | Photo Supplied
Security Policy 2024
Security Policy ensures a safe haven for learning and growth at the University of the Free State.

Fostering an environment conducive to high-quality learning and teaching is paramount at the University of the Free State (UFS). “This commitment extends beyond academic pursuits to encompass the well-being and safety of every member of our university community,” says Cobus van Jaarsveld, Deputy Director of Threat Detection, Investigations, Compliance, and Liaison at the Department of Protection Services.

The university’s dedication to safety in alignment with Vision 130, our Strategic Plan 2023-2028. Protection Services at UFS adheres to a standard of excellence in all aspects of university life. “We prioritise integrity, accountability, and responsibility, striving to create an environment where the happiness and the well-being of our community are central,” adds Van Jaarsveld.

To uphold these values effectively, UFS has initiated a review of the Security Policy, reflecting a renewed approach to safety and security. This policy aims to enhance the UFS experience by ensuring the safety and security of individuals, property, and information across all campuses, satellite sites, and university premises.

Foundational principles

The Security Policy is built upon several core principles. These include a commitment to excellence, ensuring alignment with institutional goals and national legislation, as well as prioritising safety across UFS locations. Partnerships with stakeholders are emphasised to effectively address security challenges. Additionally, the policy highlights universal access, aiming to make safety measures accessible to all members of the university community, including those with disabilities.

Aim and strategies of the policy

The aim of the Security Policy is multifaceted. It seeks to establish a unified approach to safety and security, engaging all pertinent stakeholders in a coordinated effort. Furthermore, the policy endeavours to bolster infrastructure and equip security personnel with the necessary resources to preemptively identify and address potential threats. It also strives to cultivate a culture of heightened security consciousness and active community participation. Compliance with pertinent legislation, particularly in areas such as firearm control, is prioritised. The execution of all security-related functions is entrusted to Protection Services as outlined within the policy framework.

Protection Services personnel are tasked with:

• Identifying and assessing security risks.
• Issuing early warnings and incident reports.
• Responding to emergencies and investigating incidents.
• Developing and implementing security guidelines and protocols.
• Educating and raising awareness within the university community.

• Supporting off-campus students in emergencies and reporting incidents.

At UFS, safety and security are not just policies; they are foundational elements of the university’s commitment to excellence and community well-being. Through collaboration, vigilance, and a proactive approach, the UFS strives to create an environment where everyone can thrive and contribute to a brighter future.

Contact Protection Services 

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click to view documentClick here to download the UFS Security Policy.


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept