Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2024 | Story Valentino Ndaba | Photo Supplied
Security Policy 2024
Security Policy ensures a safe haven for learning and growth at the University of the Free State.

Fostering an environment conducive to high-quality learning and teaching is paramount at the University of the Free State (UFS). “This commitment extends beyond academic pursuits to encompass the well-being and safety of every member of our university community,” says Cobus van Jaarsveld, Deputy Director of Threat Detection, Investigations, Compliance, and Liaison at the Department of Protection Services.

The university’s dedication to safety in alignment with Vision 130, our Strategic Plan 2023-2028. Protection Services at UFS adheres to a standard of excellence in all aspects of university life. “We prioritise integrity, accountability, and responsibility, striving to create an environment where the happiness and the well-being of our community are central,” adds Van Jaarsveld.

To uphold these values effectively, UFS has initiated a review of the Security Policy, reflecting a renewed approach to safety and security. This policy aims to enhance the UFS experience by ensuring the safety and security of individuals, property, and information across all campuses, satellite sites, and university premises.

Foundational principles

The Security Policy is built upon several core principles. These include a commitment to excellence, ensuring alignment with institutional goals and national legislation, as well as prioritising safety across UFS locations. Partnerships with stakeholders are emphasised to effectively address security challenges. Additionally, the policy highlights universal access, aiming to make safety measures accessible to all members of the university community, including those with disabilities.

Aim and strategies of the policy

The aim of the Security Policy is multifaceted. It seeks to establish a unified approach to safety and security, engaging all pertinent stakeholders in a coordinated effort. Furthermore, the policy endeavours to bolster infrastructure and equip security personnel with the necessary resources to preemptively identify and address potential threats. It also strives to cultivate a culture of heightened security consciousness and active community participation. Compliance with pertinent legislation, particularly in areas such as firearm control, is prioritised. The execution of all security-related functions is entrusted to Protection Services as outlined within the policy framework.

Protection Services personnel are tasked with:

• Identifying and assessing security risks.
• Issuing early warnings and incident reports.
• Responding to emergencies and investigating incidents.
• Developing and implementing security guidelines and protocols.
• Educating and raising awareness within the university community.

• Supporting off-campus students in emergencies and reporting incidents.

At UFS, safety and security are not just policies; they are foundational elements of the university’s commitment to excellence and community well-being. Through collaboration, vigilance, and a proactive approach, the UFS strives to create an environment where everyone can thrive and contribute to a brighter future.

Contact Protection Services 

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click to view documentClick here to download the UFS Security Policy.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept