Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2024 | Story Valentino Ndaba | Photo Supplied
Security Policy 2024
Security Policy ensures a safe haven for learning and growth at the University of the Free State.

Fostering an environment conducive to high-quality learning and teaching is paramount at the University of the Free State (UFS). “This commitment extends beyond academic pursuits to encompass the well-being and safety of every member of our university community,” says Cobus van Jaarsveld, Deputy Director of Threat Detection, Investigations, Compliance, and Liaison at the Department of Protection Services.

The university’s dedication to safety in alignment with Vision 130, our Strategic Plan 2023-2028. Protection Services at UFS adheres to a standard of excellence in all aspects of university life. “We prioritise integrity, accountability, and responsibility, striving to create an environment where the happiness and the well-being of our community are central,” adds Van Jaarsveld.

To uphold these values effectively, UFS has initiated a review of the Security Policy, reflecting a renewed approach to safety and security. This policy aims to enhance the UFS experience by ensuring the safety and security of individuals, property, and information across all campuses, satellite sites, and university premises.

Foundational principles

The Security Policy is built upon several core principles. These include a commitment to excellence, ensuring alignment with institutional goals and national legislation, as well as prioritising safety across UFS locations. Partnerships with stakeholders are emphasised to effectively address security challenges. Additionally, the policy highlights universal access, aiming to make safety measures accessible to all members of the university community, including those with disabilities.

Aim and strategies of the policy

The aim of the Security Policy is multifaceted. It seeks to establish a unified approach to safety and security, engaging all pertinent stakeholders in a coordinated effort. Furthermore, the policy endeavours to bolster infrastructure and equip security personnel with the necessary resources to preemptively identify and address potential threats. It also strives to cultivate a culture of heightened security consciousness and active community participation. Compliance with pertinent legislation, particularly in areas such as firearm control, is prioritised. The execution of all security-related functions is entrusted to Protection Services as outlined within the policy framework.

Protection Services personnel are tasked with:

• Identifying and assessing security risks.
• Issuing early warnings and incident reports.
• Responding to emergencies and investigating incidents.
• Developing and implementing security guidelines and protocols.
• Educating and raising awareness within the university community.

• Supporting off-campus students in emergencies and reporting incidents.

At UFS, safety and security are not just policies; they are foundational elements of the university’s commitment to excellence and community well-being. Through collaboration, vigilance, and a proactive approach, the UFS strives to create an environment where everyone can thrive and contribute to a brighter future.

Contact Protection Services 

Bloemfontein Campus Protection Services: +27 51 401 2911 or +27 51 401 2634
South Campus Protection Services: +27 51 505 1217 
Qwaqwa Campus Protection Services: +27 58 718 5460 or +27 58 718 5175

Click to view documentClick here to download the UFS Security Policy.


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept