Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2024 | Story André Damons | Photo Supplied
Science Oscars Winners 2024
From top-left to right: Drs Claudia Ntsapi, Mpho Mafa, Angélique Lewies, Yolandi Schoeman, and Bimo Nkhata are dedicated to innovative solutions spanning from addressing brain aging to enhancing food security, developing xenograft scaffolds for regenerative medicine, transforming degraded terrains into vibrant landscapes, and protecting precious water resources. Prof Sandy-Lynn Steenhuisen's research team investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

A neuropsychologist, a biochemist, a cell biologist, and an ecological engineer from the University of the Free State (UFS) have all received their first nomination in this year’s NSTF-South32 Awards. The four researchers have been nominated in the TW Kambule-NSTF Award: Emerging Researcher category.

These emerging researchers are part of a group of nine UFS researchers nominated for the ‘Science Oscars of South Africa’. Two other researchers; Prof Sandy-Lynn Steenhuisen, Associate Professor and Subject Head: Department of Plant Sciences and the Afromontane Research Unit (ARU), and Dr Bimo Abraham Nkhata, Senior Lecturer at the UFS Centre for Environmental Management (CEM), have also been nominated in the categories Green Economy and NSTF-Water Research Commission (WRC) respectively.

Preserving human brain health with age

Dr Claudia Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, says the research that led to her nomination focuses on preserving human brain health to delay or prevent age-related conditions, such as Alzheimer's disease.

The nomination, she says, reaffirms the growing impact of their research efforts and reinforces her commitment to contributing toward enhancing the quality of life for individuals affected by age-related neurodegenerative diseases and their families.

“Leveraging advanced cell-based models that mimic human cellular environments, my research investigates the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases. By utilising cutting-edge techniques, such as the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” Dr Ntsapi explains.

Improving food security, and renewable resources for circular economy 

A humbled and excited Dr Mpho Mafa says his nomination is based on the impact and quality of research his group (carbohydrates and enzymology Laboratory: CHEM-Lab) produced since 2020.

“My research group uses biochemical, enzymological, and biotechnological techniques to study the physiological and biochemical functions of carbohydrate-active enzymes (CAZymes) and carbohydrate metabolism during wheat interaction with rust disease-causing fungi or wheat infestation by a virulent Russian wheat aphid (RWA) biotype,” he said.

“The findings from these studies allow us to identify the key genes, enzymes, metabolites and biochemical processes used by wheat plants to reduce the effects of rust fungi or RWA damage, leading to improved plant health and yield. Thus, my research group uses innovative biochemistry/biotechnology approaches to protect the second-most important grain crop in South Africa against rust diseases and aphid attack.”

In addition, Dr Mafa uses the CAZymes in the field of lignocellulosic biorefinery to produce value-added products (VAPs), such as fermentable carbohydrates used in the production of second-generation biofuel for the circular economy. 

“I want to thank the NRF-Thuthuka for funding the lignocellulosic biorefinery project which aims to improve the conversion rate of lignocellulose to VAPs through enzymatic catalysis processes.” Dr Mafa says.

Tissue engineering and regenerative medicine

According to Dr Angélique Lewies, this achievement was truly a team effort from her dedicated colleagues at the Robert WM Frater Cardiovascular Research Centre. She says the nomination validates her team’s hard work and dedication, and recognises their efforts to advance the fields of tissue engineering and regenerative medicine.

“Our team has developed xenograft tissue scaffolds from non-human sources with a reduced potential to induce immune responses in human recipients, which are common causes of calcification, degradation, and failure of surgical scaffolds. We pioneered a processing technique that promotes cell infiltration, remodelling, and regeneration of the tissue. These xenografts are versatile, showing promise for use in various surgical disciplines, including cardiac and plastic surgery,” Dr Lewies says.

Induced pluripotent stem cells created from recipient skin cells, she explains, can be combined with the processed tissue, creating custom tissue products for improved patient-specific outcomes. Their research has successfully developed a method for processing bovine pericardium that not only mitigates calcification but also preserves mechanical properties and enhances host cell infiltration, significantly increasing the longevity of the tissue when used clinically.

Environmental and sustainability challenges

“This nomination is both an honour and an affirmation of the importance of ecological engineering in addressing today’s environmental challenges,” says Dr Yolandi Schoeman.

“It represents a recognition of the value and impact of integrating natural processes with engineering principles to create sustainable and resilient ecosystems whilst addressing some of our most pressing sustainability challenges,” Dr Schoeman says.

Her work primarily revolves around ecological engineering — a field that combines natural processes with engineering principles to address environmental and sustainability challenges. “I lead projects that transform degraded terrains into vibrant, functioning landscapes through bio-intelligent design, essentially converting ecological liabilities into assets. These systems are in many cases designed from microscopic level into mega supercell systems. We've developed over 20 conservation blueprints that integrate these principles at a landscape level, also preparing them for biodiversity financing.”

By founding and institutionalising the Ecological Engineering Institute of Africa (EEIA), the EEIA aims to spread this innovative approach, emphasising the importance of both scientific rigour and ecological viability continent-wide in Africa. The goal is to create sustainable, economically sound, and ecologically robust solutions that not only regenerate but enhance environmental health and resilience for the benefit of ecosystems and communities.

Addressing water challenges in South Africa

Dr Bimo Nkhata sees his nomination as a personal milestone and as a reflection of the importance of the work he is doing to address water challenges in South Africa. The nomination also reinforces his commitment to the cause, and inspires him to strive for even greater achievements in the future, he says.

“My research and work on sustainable water management is of utmost importance for South Africa because the country faces significant water quality challenges due to pollution from various sources, including agriculture, industry, and urbanisation. Sustainable water management practices ensure the availability of sufficient and clean water for various sectors, supporting economic growth, job creation, and poverty alleviation.

“My research and initiatives contribute to protecting and preserving the country’s precious water resources, ensuring they remain clean and safe for both human consumption and ecosystem health,” explains Dr Nkhata.

Ensuring a sustainable future for the earth

For Prof Steenhuisen, this nomination is a humbling experience which will go a long way to highlighting her research group’s research.

“This nomination was certainly not earned alone; I have a fantastic collaborative support team being recognised for all the late nights and monumental efforts of the team is a huge privilege and honour. It will hopefully attract funders and interest to further support our project needs,” she says.

According to her, their research team, dubbed the QPAIR lab for Qwaqwa Plant-Animal Interactions Research lab, investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

Prof Steenhuisen says everyone should be working towards ensuring a sustainable future for the earth in terms of conservation of biodiversity and ecosystem services that can lead to food security, resilient ecosystems and healthy human livelihoods. Climate change, the loss of biodiversity due to land degradation and the spread of invasive alien species threaten these services and especially sensitive systems such as those found in our mountains. 

• The awards ceremony will take place on 11 July 2024.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept