Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2024 | Story André Damons | Photo Supplied
Science Oscars Winners 2024
From top-left to right: Drs Claudia Ntsapi, Mpho Mafa, Angélique Lewies, Yolandi Schoeman, and Bimo Nkhata are dedicated to innovative solutions spanning from addressing brain aging to enhancing food security, developing xenograft scaffolds for regenerative medicine, transforming degraded terrains into vibrant landscapes, and protecting precious water resources. Prof Sandy-Lynn Steenhuisen's research team investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

A neuropsychologist, a biochemist, a cell biologist, and an ecological engineer from the University of the Free State (UFS) have all received their first nomination in this year’s NSTF-South32 Awards. The four researchers have been nominated in the TW Kambule-NSTF Award: Emerging Researcher category.

These emerging researchers are part of a group of nine UFS researchers nominated for the ‘Science Oscars of South Africa’. Two other researchers; Prof Sandy-Lynn Steenhuisen, Associate Professor and Subject Head: Department of Plant Sciences and the Afromontane Research Unit (ARU), and Dr Bimo Abraham Nkhata, Senior Lecturer at the UFS Centre for Environmental Management (CEM), have also been nominated in the categories Green Economy and NSTF-Water Research Commission (WRC) respectively.

Preserving human brain health with age

Dr Claudia Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, says the research that led to her nomination focuses on preserving human brain health to delay or prevent age-related conditions, such as Alzheimer's disease.

The nomination, she says, reaffirms the growing impact of their research efforts and reinforces her commitment to contributing toward enhancing the quality of life for individuals affected by age-related neurodegenerative diseases and their families.

“Leveraging advanced cell-based models that mimic human cellular environments, my research investigates the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases. By utilising cutting-edge techniques, such as the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” Dr Ntsapi explains.

Improving food security, and renewable resources for circular economy 

A humbled and excited Dr Mpho Mafa says his nomination is based on the impact and quality of research his group (carbohydrates and enzymology Laboratory: CHEM-Lab) produced since 2020.

“My research group uses biochemical, enzymological, and biotechnological techniques to study the physiological and biochemical functions of carbohydrate-active enzymes (CAZymes) and carbohydrate metabolism during wheat interaction with rust disease-causing fungi or wheat infestation by a virulent Russian wheat aphid (RWA) biotype,” he said.

“The findings from these studies allow us to identify the key genes, enzymes, metabolites and biochemical processes used by wheat plants to reduce the effects of rust fungi or RWA damage, leading to improved plant health and yield. Thus, my research group uses innovative biochemistry/biotechnology approaches to protect the second-most important grain crop in South Africa against rust diseases and aphid attack.”

In addition, Dr Mafa uses the CAZymes in the field of lignocellulosic biorefinery to produce value-added products (VAPs), such as fermentable carbohydrates used in the production of second-generation biofuel for the circular economy. 

“I want to thank the NRF-Thuthuka for funding the lignocellulosic biorefinery project which aims to improve the conversion rate of lignocellulose to VAPs through enzymatic catalysis processes.” Dr Mafa says.

Tissue engineering and regenerative medicine

According to Dr Angélique Lewies, this achievement was truly a team effort from her dedicated colleagues at the Robert WM Frater Cardiovascular Research Centre. She says the nomination validates her team’s hard work and dedication, and recognises their efforts to advance the fields of tissue engineering and regenerative medicine.

“Our team has developed xenograft tissue scaffolds from non-human sources with a reduced potential to induce immune responses in human recipients, which are common causes of calcification, degradation, and failure of surgical scaffolds. We pioneered a processing technique that promotes cell infiltration, remodelling, and regeneration of the tissue. These xenografts are versatile, showing promise for use in various surgical disciplines, including cardiac and plastic surgery,” Dr Lewies says.

Induced pluripotent stem cells created from recipient skin cells, she explains, can be combined with the processed tissue, creating custom tissue products for improved patient-specific outcomes. Their research has successfully developed a method for processing bovine pericardium that not only mitigates calcification but also preserves mechanical properties and enhances host cell infiltration, significantly increasing the longevity of the tissue when used clinically.

Environmental and sustainability challenges

“This nomination is both an honour and an affirmation of the importance of ecological engineering in addressing today’s environmental challenges,” says Dr Yolandi Schoeman.

“It represents a recognition of the value and impact of integrating natural processes with engineering principles to create sustainable and resilient ecosystems whilst addressing some of our most pressing sustainability challenges,” Dr Schoeman says.

Her work primarily revolves around ecological engineering — a field that combines natural processes with engineering principles to address environmental and sustainability challenges. “I lead projects that transform degraded terrains into vibrant, functioning landscapes through bio-intelligent design, essentially converting ecological liabilities into assets. These systems are in many cases designed from microscopic level into mega supercell systems. We've developed over 20 conservation blueprints that integrate these principles at a landscape level, also preparing them for biodiversity financing.”

By founding and institutionalising the Ecological Engineering Institute of Africa (EEIA), the EEIA aims to spread this innovative approach, emphasising the importance of both scientific rigour and ecological viability continent-wide in Africa. The goal is to create sustainable, economically sound, and ecologically robust solutions that not only regenerate but enhance environmental health and resilience for the benefit of ecosystems and communities.

Addressing water challenges in South Africa

Dr Bimo Nkhata sees his nomination as a personal milestone and as a reflection of the importance of the work he is doing to address water challenges in South Africa. The nomination also reinforces his commitment to the cause, and inspires him to strive for even greater achievements in the future, he says.

“My research and work on sustainable water management is of utmost importance for South Africa because the country faces significant water quality challenges due to pollution from various sources, including agriculture, industry, and urbanisation. Sustainable water management practices ensure the availability of sufficient and clean water for various sectors, supporting economic growth, job creation, and poverty alleviation.

“My research and initiatives contribute to protecting and preserving the country’s precious water resources, ensuring they remain clean and safe for both human consumption and ecosystem health,” explains Dr Nkhata.

Ensuring a sustainable future for the earth

For Prof Steenhuisen, this nomination is a humbling experience which will go a long way to highlighting her research group’s research.

“This nomination was certainly not earned alone; I have a fantastic collaborative support team being recognised for all the late nights and monumental efforts of the team is a huge privilege and honour. It will hopefully attract funders and interest to further support our project needs,” she says.

According to her, their research team, dubbed the QPAIR lab for Qwaqwa Plant-Animal Interactions Research lab, investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

Prof Steenhuisen says everyone should be working towards ensuring a sustainable future for the earth in terms of conservation of biodiversity and ecosystem services that can lead to food security, resilient ecosystems and healthy human livelihoods. Climate change, the loss of biodiversity due to land degradation and the spread of invasive alien species threaten these services and especially sensitive systems such as those found in our mountains. 

• The awards ceremony will take place on 11 July 2024.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept