Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2024 | Story André Damons | Photo Supplied
Science Oscars Winners 2024
From top-left to right: Drs Claudia Ntsapi, Mpho Mafa, Angélique Lewies, Yolandi Schoeman, and Bimo Nkhata are dedicated to innovative solutions spanning from addressing brain aging to enhancing food security, developing xenograft scaffolds for regenerative medicine, transforming degraded terrains into vibrant landscapes, and protecting precious water resources. Prof Sandy-Lynn Steenhuisen's research team investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

A neuropsychologist, a biochemist, a cell biologist, and an ecological engineer from the University of the Free State (UFS) have all received their first nomination in this year’s NSTF-South32 Awards. The four researchers have been nominated in the TW Kambule-NSTF Award: Emerging Researcher category.

These emerging researchers are part of a group of nine UFS researchers nominated for the ‘Science Oscars of South Africa’. Two other researchers; Prof Sandy-Lynn Steenhuisen, Associate Professor and Subject Head: Department of Plant Sciences and the Afromontane Research Unit (ARU), and Dr Bimo Abraham Nkhata, Senior Lecturer at the UFS Centre for Environmental Management (CEM), have also been nominated in the categories Green Economy and NSTF-Water Research Commission (WRC) respectively.

Preserving human brain health with age

Dr Claudia Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, says the research that led to her nomination focuses on preserving human brain health to delay or prevent age-related conditions, such as Alzheimer's disease.

The nomination, she says, reaffirms the growing impact of their research efforts and reinforces her commitment to contributing toward enhancing the quality of life for individuals affected by age-related neurodegenerative diseases and their families.

“Leveraging advanced cell-based models that mimic human cellular environments, my research investigates the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases. By utilising cutting-edge techniques, such as the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” Dr Ntsapi explains.

Improving food security, and renewable resources for circular economy 

A humbled and excited Dr Mpho Mafa says his nomination is based on the impact and quality of research his group (carbohydrates and enzymology Laboratory: CHEM-Lab) produced since 2020.

“My research group uses biochemical, enzymological, and biotechnological techniques to study the physiological and biochemical functions of carbohydrate-active enzymes (CAZymes) and carbohydrate metabolism during wheat interaction with rust disease-causing fungi or wheat infestation by a virulent Russian wheat aphid (RWA) biotype,” he said.

“The findings from these studies allow us to identify the key genes, enzymes, metabolites and biochemical processes used by wheat plants to reduce the effects of rust fungi or RWA damage, leading to improved plant health and yield. Thus, my research group uses innovative biochemistry/biotechnology approaches to protect the second-most important grain crop in South Africa against rust diseases and aphid attack.”

In addition, Dr Mafa uses the CAZymes in the field of lignocellulosic biorefinery to produce value-added products (VAPs), such as fermentable carbohydrates used in the production of second-generation biofuel for the circular economy. 

“I want to thank the NRF-Thuthuka for funding the lignocellulosic biorefinery project which aims to improve the conversion rate of lignocellulose to VAPs through enzymatic catalysis processes.” Dr Mafa says.

Tissue engineering and regenerative medicine

According to Dr Angélique Lewies, this achievement was truly a team effort from her dedicated colleagues at the Robert WM Frater Cardiovascular Research Centre. She says the nomination validates her team’s hard work and dedication, and recognises their efforts to advance the fields of tissue engineering and regenerative medicine.

“Our team has developed xenograft tissue scaffolds from non-human sources with a reduced potential to induce immune responses in human recipients, which are common causes of calcification, degradation, and failure of surgical scaffolds. We pioneered a processing technique that promotes cell infiltration, remodelling, and regeneration of the tissue. These xenografts are versatile, showing promise for use in various surgical disciplines, including cardiac and plastic surgery,” Dr Lewies says.

Induced pluripotent stem cells created from recipient skin cells, she explains, can be combined with the processed tissue, creating custom tissue products for improved patient-specific outcomes. Their research has successfully developed a method for processing bovine pericardium that not only mitigates calcification but also preserves mechanical properties and enhances host cell infiltration, significantly increasing the longevity of the tissue when used clinically.

Environmental and sustainability challenges

“This nomination is both an honour and an affirmation of the importance of ecological engineering in addressing today’s environmental challenges,” says Dr Yolandi Schoeman.

“It represents a recognition of the value and impact of integrating natural processes with engineering principles to create sustainable and resilient ecosystems whilst addressing some of our most pressing sustainability challenges,” Dr Schoeman says.

Her work primarily revolves around ecological engineering — a field that combines natural processes with engineering principles to address environmental and sustainability challenges. “I lead projects that transform degraded terrains into vibrant, functioning landscapes through bio-intelligent design, essentially converting ecological liabilities into assets. These systems are in many cases designed from microscopic level into mega supercell systems. We've developed over 20 conservation blueprints that integrate these principles at a landscape level, also preparing them for biodiversity financing.”

By founding and institutionalising the Ecological Engineering Institute of Africa (EEIA), the EEIA aims to spread this innovative approach, emphasising the importance of both scientific rigour and ecological viability continent-wide in Africa. The goal is to create sustainable, economically sound, and ecologically robust solutions that not only regenerate but enhance environmental health and resilience for the benefit of ecosystems and communities.

Addressing water challenges in South Africa

Dr Bimo Nkhata sees his nomination as a personal milestone and as a reflection of the importance of the work he is doing to address water challenges in South Africa. The nomination also reinforces his commitment to the cause, and inspires him to strive for even greater achievements in the future, he says.

“My research and work on sustainable water management is of utmost importance for South Africa because the country faces significant water quality challenges due to pollution from various sources, including agriculture, industry, and urbanisation. Sustainable water management practices ensure the availability of sufficient and clean water for various sectors, supporting economic growth, job creation, and poverty alleviation.

“My research and initiatives contribute to protecting and preserving the country’s precious water resources, ensuring they remain clean and safe for both human consumption and ecosystem health,” explains Dr Nkhata.

Ensuring a sustainable future for the earth

For Prof Steenhuisen, this nomination is a humbling experience which will go a long way to highlighting her research group’s research.

“This nomination was certainly not earned alone; I have a fantastic collaborative support team being recognised for all the late nights and monumental efforts of the team is a huge privilege and honour. It will hopefully attract funders and interest to further support our project needs,” she says.

According to her, their research team, dubbed the QPAIR lab for Qwaqwa Plant-Animal Interactions Research lab, investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

Prof Steenhuisen says everyone should be working towards ensuring a sustainable future for the earth in terms of conservation of biodiversity and ecosystem services that can lead to food security, resilient ecosystems and healthy human livelihoods. Climate change, the loss of biodiversity due to land degradation and the spread of invasive alien species threaten these services and especially sensitive systems such as those found in our mountains. 

• The awards ceremony will take place on 11 July 2024.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept