Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2024 | Story André Damons | Photo Supplied
Science Oscars Winners 2024
From top-left to right: Drs Claudia Ntsapi, Mpho Mafa, Angélique Lewies, Yolandi Schoeman, and Bimo Nkhata are dedicated to innovative solutions spanning from addressing brain aging to enhancing food security, developing xenograft scaffolds for regenerative medicine, transforming degraded terrains into vibrant landscapes, and protecting precious water resources. Prof Sandy-Lynn Steenhuisen's research team investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

A neuropsychologist, a biochemist, a cell biologist, and an ecological engineer from the University of the Free State (UFS) have all received their first nomination in this year’s NSTF-South32 Awards. The four researchers have been nominated in the TW Kambule-NSTF Award: Emerging Researcher category.

These emerging researchers are part of a group of nine UFS researchers nominated for the ‘Science Oscars of South Africa’. Two other researchers; Prof Sandy-Lynn Steenhuisen, Associate Professor and Subject Head: Department of Plant Sciences and the Afromontane Research Unit (ARU), and Dr Bimo Abraham Nkhata, Senior Lecturer at the UFS Centre for Environmental Management (CEM), have also been nominated in the categories Green Economy and NSTF-Water Research Commission (WRC) respectively.

Preserving human brain health with age

Dr Claudia Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, says the research that led to her nomination focuses on preserving human brain health to delay or prevent age-related conditions, such as Alzheimer's disease.

The nomination, she says, reaffirms the growing impact of their research efforts and reinforces her commitment to contributing toward enhancing the quality of life for individuals affected by age-related neurodegenerative diseases and their families.

“Leveraging advanced cell-based models that mimic human cellular environments, my research investigates the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases. By utilising cutting-edge techniques, such as the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” Dr Ntsapi explains.

Improving food security, and renewable resources for circular economy 

A humbled and excited Dr Mpho Mafa says his nomination is based on the impact and quality of research his group (carbohydrates and enzymology Laboratory: CHEM-Lab) produced since 2020.

“My research group uses biochemical, enzymological, and biotechnological techniques to study the physiological and biochemical functions of carbohydrate-active enzymes (CAZymes) and carbohydrate metabolism during wheat interaction with rust disease-causing fungi or wheat infestation by a virulent Russian wheat aphid (RWA) biotype,” he said.

“The findings from these studies allow us to identify the key genes, enzymes, metabolites and biochemical processes used by wheat plants to reduce the effects of rust fungi or RWA damage, leading to improved plant health and yield. Thus, my research group uses innovative biochemistry/biotechnology approaches to protect the second-most important grain crop in South Africa against rust diseases and aphid attack.”

In addition, Dr Mafa uses the CAZymes in the field of lignocellulosic biorefinery to produce value-added products (VAPs), such as fermentable carbohydrates used in the production of second-generation biofuel for the circular economy. 

“I want to thank the NRF-Thuthuka for funding the lignocellulosic biorefinery project which aims to improve the conversion rate of lignocellulose to VAPs through enzymatic catalysis processes.” Dr Mafa says.

Tissue engineering and regenerative medicine

According to Dr Angélique Lewies, this achievement was truly a team effort from her dedicated colleagues at the Robert WM Frater Cardiovascular Research Centre. She says the nomination validates her team’s hard work and dedication, and recognises their efforts to advance the fields of tissue engineering and regenerative medicine.

“Our team has developed xenograft tissue scaffolds from non-human sources with a reduced potential to induce immune responses in human recipients, which are common causes of calcification, degradation, and failure of surgical scaffolds. We pioneered a processing technique that promotes cell infiltration, remodelling, and regeneration of the tissue. These xenografts are versatile, showing promise for use in various surgical disciplines, including cardiac and plastic surgery,” Dr Lewies says.

Induced pluripotent stem cells created from recipient skin cells, she explains, can be combined with the processed tissue, creating custom tissue products for improved patient-specific outcomes. Their research has successfully developed a method for processing bovine pericardium that not only mitigates calcification but also preserves mechanical properties and enhances host cell infiltration, significantly increasing the longevity of the tissue when used clinically.

Environmental and sustainability challenges

“This nomination is both an honour and an affirmation of the importance of ecological engineering in addressing today’s environmental challenges,” says Dr Yolandi Schoeman.

“It represents a recognition of the value and impact of integrating natural processes with engineering principles to create sustainable and resilient ecosystems whilst addressing some of our most pressing sustainability challenges,” Dr Schoeman says.

Her work primarily revolves around ecological engineering — a field that combines natural processes with engineering principles to address environmental and sustainability challenges. “I lead projects that transform degraded terrains into vibrant, functioning landscapes through bio-intelligent design, essentially converting ecological liabilities into assets. These systems are in many cases designed from microscopic level into mega supercell systems. We've developed over 20 conservation blueprints that integrate these principles at a landscape level, also preparing them for biodiversity financing.”

By founding and institutionalising the Ecological Engineering Institute of Africa (EEIA), the EEIA aims to spread this innovative approach, emphasising the importance of both scientific rigour and ecological viability continent-wide in Africa. The goal is to create sustainable, economically sound, and ecologically robust solutions that not only regenerate but enhance environmental health and resilience for the benefit of ecosystems and communities.

Addressing water challenges in South Africa

Dr Bimo Nkhata sees his nomination as a personal milestone and as a reflection of the importance of the work he is doing to address water challenges in South Africa. The nomination also reinforces his commitment to the cause, and inspires him to strive for even greater achievements in the future, he says.

“My research and work on sustainable water management is of utmost importance for South Africa because the country faces significant water quality challenges due to pollution from various sources, including agriculture, industry, and urbanisation. Sustainable water management practices ensure the availability of sufficient and clean water for various sectors, supporting economic growth, job creation, and poverty alleviation.

“My research and initiatives contribute to protecting and preserving the country’s precious water resources, ensuring they remain clean and safe for both human consumption and ecosystem health,” explains Dr Nkhata.

Ensuring a sustainable future for the earth

For Prof Steenhuisen, this nomination is a humbling experience which will go a long way to highlighting her research group’s research.

“This nomination was certainly not earned alone; I have a fantastic collaborative support team being recognised for all the late nights and monumental efforts of the team is a huge privilege and honour. It will hopefully attract funders and interest to further support our project needs,” she says.

According to her, their research team, dubbed the QPAIR lab for Qwaqwa Plant-Animal Interactions Research lab, investigates the dynamics of mountain ecosystems in terms of pollination, seed dispersal and other aspects of plant reproductive ecology and vegetation community, largely assessing the impacts of climate change and invasive alien plants on these systems.

Prof Steenhuisen says everyone should be working towards ensuring a sustainable future for the earth in terms of conservation of biodiversity and ecosystem services that can lead to food security, resilient ecosystems and healthy human livelihoods. Climate change, the loss of biodiversity due to land degradation and the spread of invasive alien species threaten these services and especially sensitive systems such as those found in our mountains. 

• The awards ceremony will take place on 11 July 2024.

News Archive

Research on cactus pear grabs attention of food, cosmetic and medical industry
2015-02-18

Cactus pear
Photo: Charl Devenish

The dedicated research and development programme at the UFS on spineless cactus pear (Opuntia ficus-indica) – also known as prickly pear – has grown steadily in both vision and dimension during the past 15 years. Formal cactus pear research at the UFS started with the formation of the Prickly Pear Working Group (PPWG) in June 2002. It has since gone from strength to strength with several MSc dissertations and a PhD thesis as well as popular and scientific publications flowing from this initiative.

According to Prof Wijnand Swart from the Department of Plant Sciences, the UFS is today recognised as a leading institution in the world conducting multi-disciplinary research on spineless cactus pear.

Cactus pear for animal feed

Increasing demands on already scarce water resources in South Africa require alternative sources of animal feed – specifically crops that are more efficient users of water. One alternative with the potential for widespread production is spineless cactus pear. It is 1.14 x more efficient in its use of water than Old man saltbush, 2.8 x more efficient than wheat, 3.75 x more efficient than lucerne and 7.5 x more efficient than rangeland vegetation.

“Studies on the use of sun-dried cactus pear cladodes suggest that it has the potential to provide some 25% of the basic feed resources required by South Africa’s commercial ruminant feed manufacturing sector,” says Prof HO de Waal of the Department of Animal, Wildlife and Grassland Sciences at the UFS.

Until recently, research has focused extensively on the use of cactus pear as drought fodder. However, this is now beginning to shift, with growing interest in the intensive production of spineless cactus pear for other types of animal feed. One example is the spineless cactus pear fruit, produced seasonal, yielding large quantities of fruit in a relatively short period of a few months in summer. Unless kept in cold storage, the fruit cannot be stored for a long period. Therefore, a procedure was developed to combine large volumes of mashed cactus pear fruit with dry hay and straw and preserve it for longer periods as high moisture livestock feed, kuilmoes – a high water content livestock feed similar to silage.

Cactus pear and Pineapple juice
Photo: Charl Devenish

Cactus pear for human consumption

“In addition to its use as a livestock feed, cactus pear is increasingly being cultivated for human consumption. Although the plant can be consumed fresh as a juice or vegetable, significant value can be added through processing. This potential is considerable: the plant can be pickled; preserved as a jam or marmalade; or dried and milled to produce baking flour. It can also serve as a replacement of egg and fat in mayonnaise,” said Dr Maryna de Wit from the Department of Microbial, Biochemical and Food Biotechnology.

The extraction of mucilage from fresh cladodes can form a gelling, emulsifier, and fat-replacing agent commonly found in food products such as mayonnaise and candy. During an information session to the media Dr De Wit and her team conducted a food demonstration to showcase the use of the cladodes in a juice, chicken stir-fry, biscuits and a salad.

The extrusion of cactus pear seed oil provides a further lucrative niche product to the array of uses. These include high-value organic oil for the cosmetic sector, such as soap, hair gel and sun screens.

The cladodes and the fruit also have medicinal uses. It has anti-viral, anti-inflammatory, pain killing and anti-diabetic agents. It is also high in fibre and can lower cholesterol. The fruit also prevents proliferation of cells and suppresses tumour growth and can even help to reduce a hangover.

In South Africa the outdated perception of cactus pears as thorny, alien invaders, is rapidly disappearing. Instead, farmers now recognise that cactus pear can play a vital role as a high yielding, water-efficient, multi-use crop, said Prof de Waal and the members of the Cactus Pear Team.

Facebook photo gallery
Dagbreek interview with Dr Maryna de Wit  

Research on cactus pear (read the full story)

For more information or enquiries contact news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept