Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 October 2024 | Story Leonie Bolleurs | Photo Supplied
Thandi Mazibuko
Thandi Mazibuko, with her presentation: LED there be light, was the overall institutional winner in the PhD category and the runner-up in the national competition of this year’s 3MT competition.

The Centre for Graduate Support (CGS) recently (11 October 2024) hosted the annual institutional Three-Minute Thesis Competition (3MT), which was followed by the national competition (25 October). This year, the nationals took place on the UFS Bloemfontein Campus. According to Tshepiso Mokoena, responsible for Research Capacity Development in CGS, the participating master’s and PhD students gave well-prepared presentations. The competition aims to equip postgraduate students with valuable communication and presentation skills.

She says that postgraduate students are encouraged to do research that will benefit the community. “To do this, students should be able to communicate and present their research to a non-specialist audience. The 3MT competition trains and equips them with skills that they will use in their community and workplace,” she noted.

Overall PhD winner

The overall winner in the PhD category of the UFS competition was Thandi Mazibuko with her presentation: LED there be light. Thandi was also announced as the first runner-up at the national competition.

Growing up in Qwaqwa, Thandi’s passion for mathematics and the natural sciences led her to pursue a BSc Physics degree at the UFS in 2013, followed by an honours at the UFS. She then completed her MSc at the University of the Western Cape and worked as a science engagement intern at iThemba LABS in Cape Town, which inspired her to start a YouTube channel with more than 4 800 subscribers, called Thandisayensi. On this channel she uploads Physical Sciences videos for learners in grades 10-12.

Thandi states that she loves learning and being in learning environments; in 2022, she registered for a PhD in Solid State Physics under the supervision of Prof Hendrik Swart and Prof David Motaung.

Her research focuses on synthesising a phosphor material capable of emitting red, green, and blue light, which, when combined, creates the perception of white light. Thandi compared the research process to cooking, explaining how the preparation of phosphors resembles food preparation. She believes that relatable language, analogies, and storytelling are important tools in science communication.

Thandi says that this competition was a valuable platform to improve her science communication skills. “It is an interesting challenge to explain your work in 180 seconds to an audience with different backgrounds,” she said, adding that she is excited to represent the UFS at the national competition.

The other winners

Each department hosts its own 3MT competition, and the winners and runners-up in both the master’s and PhD categories then represent their faculty in the institutional competition.

The master’s category winners from other faculties were:

  • Faculty of Economic and Management Sciences: Evodia Mohoanyane with Does SI/tutoring work and what about it works? Evodia was also the overall winner in the institutional competition in the master’s category.
  • The Humanities: Yonwaba Matshobotiyana with Of Speaking and Visibility: Black Women Poets' Voices in South Africa
  • Health Sciences: Viwe Fokazi with Establishing a novel 3D doxorubicin-resistant triple-negative breast cancer spheroid model

In the PhD category, the winners were:

  • Economic and Management Sciences: Chrizaan Grobbelaar with The use of gamification to enhance retirement preparedness of millennials
  • The Humanities: Sheree Pretorius with The Psychometric Properties of the Prison Adjustment Questionnaire (PAQ) among South African Male Incarcerated Offenders

With Thandi, first runner-up of the institutional competition, Chrizaan, participated in the national 3MT competition. Universities such as the Nelson Mandela University, UNISA, University of KwaZulu-Natal, University of the Western Cape, University of Johannesburg, and the Central University of Technology were also present. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept