Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2024 | Story Leonie Bolleurs | Photo Kaleidoscope
In a nail-biting Varsity Netball semi-final, UFS KovsieNetball triumphed over defending champions UP Tuks, winning 68-62.

In a nail-biting Varsity Netball semi-final, UFS KovsieNetball triumphed over defending champions UP Tuks (30 September 2024), winning 68-62 in the Callie Human Centre on the UFS Bloemfontein Campus. The victory advances them to the final on Monday next week, where they will face UJ.

Early lead and strong performances

Despite a close first half, Kovsies led 15-13 at the first quarter break and 35-31 at half-time, relying on strong performances from goal shooters Rolene Streutker and Xandri Fourie. The game turned in the third quarter when Kovsies extended their lead to 53-43. Tuks fought back during their power play in the final quarter, but Kovsies' consistent play, supported by a lively home crowd, ensured their victory and advancement to the final.

Fourie was named FNB player of the march.

According to head coach Burta de Kock, teamwork played a vital role. “Each player took responsibility for her role on the court and the players played for each other,” she said.

De Kock said they analysed UP's style of play and identified their attack strategy. “We knew they had an accurate goal, so we focused on disrupting the feed to the goal, which led to more interceptions.”

Preparing for final against UJ

Looking ahead to the final against UJ, De Kock acknowledged the challenge, saying that they expect it to be a tough match. "UJ hasn’t won a final yet, and their hearts are set on winning. But we are also ready to take excellence to the court and finish the season on a high,” she commented, "because we have brilliant players, each one understanding her responsibility."

To ensure that the KovsieNetball team is well prepared for this critical match, they are supported by an experienced and dedicated coaching staff, each playing an important role in their success. Leading the charge is De Kock, who guided the team to multiple victories. During her years at KovsieSport, she has developed around 20 Protea players. Defence coach Karla Pretorius, currently also the vice-captain of the Spar Proteas, brings a wealth of international experience to strengthen the team's defence. Attack coach Khanyisa Chawane, now also the captain of the Spar Proteas, focuses on sharpening the offensive strategy. Team manager Ané Retief ensures smooth operations behind the scenes, making this dynamic team an unstoppable force on the court. She is also part of the Protea squad that will represent South Africa at the Fast5 World Series in New Zealand in November.

The Varsity Netball final is set for Monday 7 October at 19:00 in the Callie Human Centre. A limited number of tickets will be available at www.varsitysportsa.com so, supporters are encouraged to get theirs as soon as possible. De Kock expressed her gratitude to the fans, saying, “Without your support, we couldn’t have done it.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept