Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2024 | Story Litha Banjatwa | Photo Supplied
Matriculant of the year 2024
This year’s winner, Jayden Leech (centre), deputy head boy and hockey captain at Grey College.

For more than four decades, the University of the Free State (UFS) has used its annual Matriculant of the Year competition to attract the country’s top matriculants. This prestigious award recognises and celebrates the exceptional achievements of South African high school students who excel in academics, sports, culture, and leadership.

This year’s winner, Jayden Leech, deputy head boy and hockey captain at Grey College, stands out not only for his academic average of 90% but also for his sporting achievements. He has represented South Africa in karate and has been a member of the Free State Hockey and Waterpolo teams for the past three years. Jayden has been selected to pursue a medical degree.

The competition is closely aligned with the UFS’s Vision 130, which envisions a future where academic excellence, innovation, and societal impact are prioritised. “By recognising academic success, creativity, resilience, and leadership potential, the university aims to attract the brightest minds to join its community. This competition serves as a platform to identify and nurture future leaders who will help address South Africa's pressing challenges,” says Nomonde Mbadi, Director of Student Recruitment Services.

This year, the competition attracted 60 applicants, with a strong representation of women - 43 women and 17 men. The Free State province led with 28 entries, followed by North West, KwaZulu-Natal, and Gauteng. Popular fields of study among applicants included Medicine (MBChB), Accounting, Engineering, and Law. While the overall academic average of all entries was an impressive 81%, the top 14 finalists achieved an outstanding average of 85%.

Through a series of interviews and group activities, candidates were assessed on their critical thinking, communication skills, and ability to collaborate effectively. The Matriculant of the Year is ultimately selected for their overall balance, leadership potential, and capacity to serve as an ambassador for the UFS.

The Matriculant of the Year competition reflects the UFS’s commitment to fostering a diverse, inclusive, and equitable learning environment, aligned with the university’s values of social justice and sustainability. “By aligning this competition with Vision 130, we reaffirm the UFS’s dedication to transforming lives, creating opportunities, and shaping the next generation of leaders who will drive societal and economic progress,’’ adds Mbadi. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept