Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2024 | Story Litha Banjatwa | Photo Supplied
Matriculant of the year 2024
This year’s winner, Jayden Leech (centre), deputy head boy and hockey captain at Grey College.

For more than four decades, the University of the Free State (UFS) has used its annual Matriculant of the Year competition to attract the country’s top matriculants. This prestigious award recognises and celebrates the exceptional achievements of South African high school students who excel in academics, sports, culture, and leadership.

This year’s winner, Jayden Leech, deputy head boy and hockey captain at Grey College, stands out not only for his academic average of 90% but also for his sporting achievements. He has represented South Africa in karate and has been a member of the Free State Hockey and Waterpolo teams for the past three years. Jayden has been selected to pursue a medical degree.

The competition is closely aligned with the UFS’s Vision 130, which envisions a future where academic excellence, innovation, and societal impact are prioritised. “By recognising academic success, creativity, resilience, and leadership potential, the university aims to attract the brightest minds to join its community. This competition serves as a platform to identify and nurture future leaders who will help address South Africa's pressing challenges,” says Nomonde Mbadi, Director of Student Recruitment Services.

This year, the competition attracted 60 applicants, with a strong representation of women - 43 women and 17 men. The Free State province led with 28 entries, followed by North West, KwaZulu-Natal, and Gauteng. Popular fields of study among applicants included Medicine (MBChB), Accounting, Engineering, and Law. While the overall academic average of all entries was an impressive 81%, the top 14 finalists achieved an outstanding average of 85%.

Through a series of interviews and group activities, candidates were assessed on their critical thinking, communication skills, and ability to collaborate effectively. The Matriculant of the Year is ultimately selected for their overall balance, leadership potential, and capacity to serve as an ambassador for the UFS.

The Matriculant of the Year competition reflects the UFS’s commitment to fostering a diverse, inclusive, and equitable learning environment, aligned with the university’s values of social justice and sustainability. “By aligning this competition with Vision 130, we reaffirm the UFS’s dedication to transforming lives, creating opportunities, and shaping the next generation of leaders who will drive societal and economic progress,’’ adds Mbadi. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept