Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 September 2024 | Story André Damons | Photo Supplied
Dr Mampoi Jonas and Prof Jan Du Plessis
Dr Mampoi Jonas, senior lecturer in Paediatric Oncology and Prof Jan Du Plessis, Head of the Paediatric Oncology Unit at the University of the Free State (UFS).

A campaign like Childhood Cancer Awareness Month is vital in creating awareness and educating people about the early signs and symptoms of certain cancers. This can significantly improve the survival rate of young patients. More than 50% of people diagnosed with cancer live for more than five years, and some types of cancer have survival rates as high as 90%.

This is according to Prof Jan Du Plessis, Head of the Paediatric Oncology Unit, and Dr Mampoi Jonas, senior lecturer in Paediatric Oncology, at the University of the Free State (UFS).

“Early diagnosis is crucial because early-stage cancer is more responsive to treatment and less likely to be fatal. Due to the rarity of childhood cancer, many children get misdiagnosed or diagnosed too late with advanced stage disease. The delayed detection and diagnosis diminish the chances of successful treatment.

“Cancer awareness educates families, communities, primary-care nurses and doctors about the early signs and symptoms of certain cancers. When people are aware of these, they are more likely to be on the lookout for them when children present with suspicious clinical symptoms and signs. This also gives parents the confidence to seek help early and even make people better able to support those with the disease once a diagnosis is made,” say the paediatric oncologists.

Recorded incidences on the rise

Though childhood cancer is rare, representing only 1.2% of all cancers worldwide, the recorded incidences are increasing. In the US cancer is the number one cause of death among children, while more than 100 000 children worldwide die because of cancer.

Prof Du Plessis says there are more than 12 major types of childhood cancers and multiple subtypes. The most common types are leukaemia, lymphoma (tumours that begin in the lymph glands), brain tumours, nephroblastoma (cancer of the kidneys) and soft tissue sarcomas. Most cancers in children are thought to develop as a result of mutations in genes that lead to uncontrolled cell growth and eventually cancer.

According to Dr Jonas, most cancers in children are thought to develop because of mutations in genes that lead to uncontrolled cell growth and eventually cancer. Although environmental pollutants have been implicated in some cancers, our experience has been that most paediatric cancers rather occur sporadically.

The reasons for the increase of reported incidence of cancer in children, could be to the increase in population numbers and better awareness of childhood cancers. Another reason might be that more children are being diagnosed who were previously misdiagnosed, explains Prof Du Plessis.

Treatments

Childhood cancers are treated with chemotherapy, surgery and radiation therapy under the care of a paediatric oncologist. Not much can be done about the genetic mutations, but parents can ensure that their children stay safe in the sun (slip, slop, slap campaign – slip on a shirt, slop on some suncream and slap on a hat), get their children vaccinated against HPV infection, help their children stay active and keep a healthy weight and talk to them about smoking.

Prof Du Plessis says the South African paediatric oncology community are currently busy with a few research studies regarding standardising treatment protocols for certain childhood cancers. This is to find out how our children are responding to these protocols and to see if there are different factors affecting the outcomes of South African children. These protocols are based on international treatment protocols with a few adjustments for local circumstances and resources.

They are involved with the Hodgkins lymphoma, neuroblastoma, retinoblastoma, germ cell tumour studies and contributed to a research study evaluating the nutritional status and interventions to improve the nutritional status of local patients. Registrars presented local (Bloemfontein) data at an international conference (SIOP Africa) on hepatoblastomas and osteosarcomas.

“For many childhood cancer may not be a priority or something they would like to think about. Unfortunately for many of my patient’s parents the truth is that the day before their children were diagnosed with cancer, they were also not a cancer parent. However, their lives changed for ever with these four words: ‘Your child has cancer’.

“Childhood cancer is more than chemo and no hair. It is rather about resilience, strength, hope, family, courage, cuddles, and bravery. Your life will be changed for ever if you have ever seen a child fight cancer. Their smiles will make your heart melt and make you realise the importance of the simple things in life,” declare Prof Du Plessis and Dr Jonas.

Early warning signs for parents

The Childhood Cancer Foundation South Africa (CHOC) has a campaign which emphasises the importance of recognising the early warning signs of childhood cancer. They use Siluan’s Early Warning Signs to raise awareness and promote early diagnosis which are:

• S – Seek medical help early for ongoing symptoms
• I – White spot in the eye, new squint, sudden blindness or bulging eyeball.
• L – Lump on the stomach, pelvis, head, arms, legs, testicle, or glands
• U – Unexplained fever present for over two weeks, weight loss, fatigue, pale appearance, easy bruising, and bleeding
• A – Aching bones, joints, back, and easy fractures

• N – Neurological signs, a change in walk, balance or speech, regression, continuous headaches with/without vomiting, and an enlarged head

While these symptoms can be subtle or easily attributed to other causes, it’s important to consult a doctor if they persist or worsen. If you notice any of these symptoms in a child or teen, seek professional medical help promptly. Early detection of cancer saves lives in both children and teens.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept