Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

2010 World Cup: An opportunity for nation-building
2010-05-11

Pictured from the left, front are: Prof. Labuschagne and Prof. Cornelissen. Back: Prof. Kersting, Prof. Teuns Verschoor (Acting Senior Vice-Rector: UFS) and Dr Ralf Hermann (DAAD).
Photo: Mangaliso Radebe

“The 2010 FIFA World Cup creates a window of opportunity for nation-building in South Africa that could even surpass the opportunity created by the 1995 Rugby World Cup.”

This was according to Prof. Pieter Labuschagne from the University of South Africa, who was one of the three speakers during the lecture series on soccer that were recently presented by the Faculty of the Humanities at the University of the Free State (UFS), in conjunction with the German Academic Exchange Service (DAAD), under the theme: Soccer and Nation Building.

Prof. Labuschagne delivered a paper on the topic, The 2010 Soccer World Cup in South Africa: Nation Building or White Apathy?, highlighting the critical issue of how sport in South Africa was still largely supported along racial lines.

“We are still enforcing the separateness of rugby as a sport for whites and soccer as a sport for blacks,” he said.

He said a high degree of animosity against soccer existed among whites because they felt rugby and cricket were being singled out by parliament as far as transformation was concerned. He said that could be the reason why a large number of South African whites still supported soccer teams from foreign countries instead of local Premier Soccer League teams.

“Bridging social context between different racial groups is still a major problem, even though patriotism is comparatively high in South Africa,” added Prof. Norbert Kersting from the University of Stellenbosch, who also presented a paper on World Cup 2010 and nation building from Germany to South Africa, drawing critical comparisons on issues of national pride and identity between the 2006 World Cup in Germany and the 2010 World Cup.

“Strong leadership is needed to utilize the opportunity provided by the 2010 World Cup to build national unity as former President Nelson Mandela did with the Rugby World Cup in 1995,” said Prof. Labuschagne.

Although acknowledging the power of sport as a unifying force, Prof. Scarlett Cornelissen, also from the University of Stellenbosch, said that, since 1995, the captivating power of sport had been used to achieve political aims and that the 2010 World Cup was no different.

Amongst the reasons she advanced for her argument were that the 2010 World Cup was meant to show the world that South Africa was a capable country; that the World Cup was meant to solidify South Africa’s “African Agenda” – the African Renaissance - and also to extend the idea of the Rainbow Nation; consolidate democracy; contribute to socio-economic development and legitimize the state.

“We should not place too much emphasis on the 2010 World Cup as a nation-building instrument,” she concluded.

She presented a paper on the topic Transforming the Nation? The political legacies of the 2010 FIFA World Cup.

The aim of the lecture series was to inspire public debate on the social and cultural dimensions of soccer.

DAAD (Deutscher Akademischer Austausch Dienst) is one of the world’s largest and most respected intermediary organisations in the field of international academic cooperation.
Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
11 May 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept