Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

New projects will enhance the infrastructure on our campuses
2011-02-04

 
Illustration:
The university's Main Gate in Nelson Mandela Avenue, as designed by The Roodt Partnership Architects.
 

A new entrance to the Main Campus, a high-performance centre, commercial gymnasium, rock-climbing wall, memorial garden for women and a botanical garden are but a few of the number of building and renovation projects that will take place at the Main Campus of the University of the Free State (UFS) in Bloemfontein. A number of projects are also being done on the Qwaqwa Campus.
On the Main Campus the entrance in Nelson Mandela Avenue is being adapted to match the university’s new corporative identity which was introduced last week. This project will be completed at the end of March 2011,
 
The creation of an environment conducive to the development of its students in the field of teaching, learning and research, as well as sports and culture is one of the main reasons why the UFS is renovating existing buildings and developing new infrastructure.
 
With the construction of a high-performance centre and commercial gymnasium, the university wants to create a work environment for its staff that will not only contribute to the cultivation of maximum work performance, but also to staff wellness. The centre with its foyer and administrative offices will furthermore consist of a health desk, university sports institute, sports sales, a spinning and aerobic centre, and dressing rooms. The total area will extend over 2114 m² and the construction will take approximately 18 months. This development will take place on the western side of the university’s Main Campus, directly opposite the Furstenburg Gate and next to the new student housing.
 
The UFS is also progressing well with other building projects which commenced last year. One of the projects is a new Education Building which is being constructed opposite the UFS Sasol Library. Upon completion this building will be used for the training of maths and science teachers in the Foundation Phase. It will include three classrooms for 100 students each and an auditorium for 225 students as well as an office block. The auditorium will also be used as a classroom. The building has been designed according to environmentally friendly principles to save water and use power effectively. It should be completed this year.
 
Planning for the construction of more student accommodation on the Main Campus as well as the Qwaqwa Campus is already well underway. On the Qwaqwa Campus, a residence with 200 beds is being constructed. This also includes a computer laboratory. According to the planning, this residence should be completed by the end of the first semester in 2011. Furthermore, four residences will be constructed on the Main Campus. These residences are in the planning phase.
 
In order to place technology within reach of Kovsie students and thereby empowering them, computer laboratories were installed at the respective residences. The computer laboratories will eventually make provision for approximately185 computers for student use. Proper security is also planned to safeguard the equipment.
 
Work to a new building for the Faculty of Health Sciences is also proceeding rapidly on the site where the vehicle pool and Hertz were previously used. This will include a lecture hall for 200 students, five venues for 100 students each, as well as offices. Students from the School for Medicine and Occupational Therapy will make use of these facilities.
 
The new building for the Faculty of Economic and Management Sciences between the Flippie Groenewoud Building and the Wynand Mouton Theatre is also coming along nicely.
 
On the university’s Qwaqwa Campus a new Education building is being constructed. This building will include a lecturing hall with 100 seats, four 50-seat classrooms, six offices, ablution facilities, a biology and science laboratory, as well as an information technology laboratory for 60 students.
 
In the meantime, existing buildings are being renovated on all the campuses. This includes, amongst others, improvements to the Architecture Building, the Biotechnology Building and the quarters for service workers on the Main Campus. Other improvements that have already been completed include the renovation of the Odeion’s foyer and the Callie Human Centre.
 
In future, students, staff and visitors to the UFS can also look forward to a rock-climbing wall at the Student Centre on the Thakaneng Bridge, a memorial park for women, residential accommodation within a sports environment, and a botanical garden.

 

Media Release
03 February 2011
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept