Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

Another boost for sport at the UFS
2005-10-13

A contract formalizing the appointment of Sports Plan (Pty) Ltd was signed by Prof Verschoor and Mr Morne du Plessis in the historic Main Building of the UFS Bloemfontein campus.

 

The University of the Free State (UFS) has officially appointed Sports Plan (Pty) Ltd, which has former Springbok rugby captain Morné du Plessis as managing director, to manage its Centre for Exercise and Sport Science Services (CESSS) on the Bloemfontein campus.

According to Prof Teuns Verschoor, Vice-Rector: Academic Operations, the appointment of Sports Plan (Pty) Ltd is another step in the implementation of the UFS’s wide-ranging sport strategy to improve sport facilities and elevate formerly marginalized sports such as soccer, hockey, netball, tennis etc.

Sports Plan (Pty) Ltd is the manager of the Sports Science Institute of South Africa and coordinates and manages the national basketball high-performance programme of SA Basketball, as well as the Boxing Academy on behalf of Boxing South Africa. 

“It is also actively involved with the sports plans of several tertiary institutions like that of the University of Johannesburg and the University of Stellenbosch,” said Prof Verschoor.

“Sports Plan (Pty) Ltd was also appointed by the Ministry of Sport and Recreation to manage the allocation of sports codes to high-performance centres and to oversee the allocation of monies received from the National Lottery to these centres – this includes the CESSS at the UFS,” Prof Verschoor added.

In unfolding its national sports plan, the Ministry of Sport and Recreation has already identified the UFS-based CESSS as the high-performance testing centre for the national basketball teams whilst the national boxing teams are also earmarked to be trained at the UFS.

“We are glad to be associated with a company of this stature and look forward to work with them in the further development of sports at the UFS,” said Prof Verschoor.

According to Prof Verschoor, the CESSS will act as a centralised body that is responsible for the coordination and management of joint initiatives between professional service providers, research projects and KovsieSport.

“The centre will also coordinate and manage joint initiatives between various academic programmes in different academic subject fields such as sports medicine, bio kinetics, physiotherapy, dietetics, etc. ,” said Prof Verschoor.

These initiatives will help the UFS to become a centre and catalyst of sports development, to become internationally recognised in the field of exercise and sports science research and to become a centre for high quality sports performance enhancement.

Some of the objectives of the CESSS are:

  •  

  • To provide sports science services like to athletes, students, the general public and other stakeholders including certain national sport teams.
  • To provide the necessary teaching and training facilities and internship opportunities for UFS students in sports related fields of study will also be provided by the centre like human movement science.
  • To present skills-transfer programmes directed at the broader community like development of skills in various sporting codes.
  • To continue and extend the current chronic risk reversal programmes presented by the Department of Human Movement Science such as obesity management, cardiac rehabilitation and other lifestyle related conditions.

The centre was founded in 2003 and was until now managed by Dr Louis Holtzhausen, from Kovsie Health and a consultant, Dr Gary Vorster. 

A contract formalizing the appointment of Sports Plan (Pty) Ltd was signed today by Prof Verschoor and Mr Morne du Plessis in the historic Main Building of the UFS Bloemfontein campus.

 

 

 

 

The manager of the centre appointed by Sports Plan (Pty) Ltd is Mr Charles Store, an alumnus of the UFS, previously employed at the Sports Science Institute in Cape Town and by the SANDF at 3 Military Hospital, Bloemfontein.

 

Media release
Issued by: Anton Fisher
Director: Strategic Communication
072-207-8334
12 October 2005
 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept