Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

Publication on indigenous knowledge systems
2005-10-21

 

 

Dr Otsile Ntsoane (acting Director: IKS, Department of Science and Technology) and Prof Philip Nel (Director:  Africa Studies at the UFS and guest editor of the publication) at the launch of the publication

UFS launches most comprehensive publication on indigenous knowledge systems
A unique collection of essays on Indigenous Knowledge Systems (IKS) was launched yesterday (20 October 2005) by the University of the Free State’s (UFS) Programme of Africa Studies.

The essays are published as a special edition of INDILINGA, the African Journal for Indigenous Knowledge Systems and is an outcome of the colloquium on Indigenous Knowledge Systems that was presented last year by the UFS Director of Africa Studies in cooperation with the National Research Council.

“The amount and diversity of materials on IKS brought together under one cover is unique as there are no other South African publications of this magnitude on this issue.  It contains papers of international experts on IKS such as Prof Fritz Wallner from Austria and Prof Gayatri Spivak, foremost postcolonial theorist from India,” said Prof Philip Nel, Director of Africa Studies and guest editor of the publication.

“The publication is a rich source field for students and scholars to exploit because most of the sources quoted in the articles are recent, fresh and relevant.  The contributors are largely people responsible for managing, fostering and studying IKS in a responsible manner,” said Prof Nel.

“An added value of the publication is the inclusion of the policy document on IKS that was adopted by Cabinet in November 2004,” said Prof Nel.


“Millions of people in South Africa are faced with the painful choice of abandoning their heritage.  In this choice, the study and management of IKS has a major role to play; on the one hand, to encourage as much assimilation of traditional knowledge as possible into the modern systems, and on the other hand to provide a “language” and a “grammar” for indigenous people through which they can access modernity,” said Prof Nel.

The IKS debate involves questions of African identity, protection of indigenous communities and practices, political aspects as well as the scientific integrity of the enterprise. 

The publication displays the range of burning questions that have to be resolved in this field such as mainstreaming IKS in academic debate and practice, recognition and protection of the knowledge holders, bio-prospecting and bio-piracy, bio and ethnic healing, lack of textbooks and field manuals, etc and will prove worthwhile for future researchers.

 “One of the main reasons for publishing this volume is the fact that IKS should be studied not only to provide a sense of pride in the past, or  to engender respect for indigenous peoples, but also to enable people in indigenous mind sets to make a better transition into the world of science and technology,” said Prof Nel.

The guest speaker at the launch was Dr Otsile Ntsoane, acting Director of IKS at the Department of Science and Technology.  In his speech Dr Ntsoane stressed the symbolic and concrete value of the publication.  “The publication can have a great social impact and the research results can contribute to chancing the economic landscape of South Africa,” he said.

The publication can be purchased at R150 per copy.  For more information, Ms Steffi Cawood, Programme Coordinator for Africa Studies at the UFS can be contacted at (051) 401-2614.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 October 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept