Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

UFS in forefront with ASGI-SA initiative
2006-05-10

At the conceptualisation colloquium and stakeholder dialogue were from the left Dr Aldo Stroebel (senior researcher at the UFS Research Development Directorate), Dr Edith Vries (acting Chief Executive Officer of the Independent Development Trust) and Prof Frans Swanepoel (Director: UFS Research Development Directorate).

UFS in forefront with ASGI-SA initiative

Two staff members of the University of the Free State (UFS) have been appointed as members of the advisory board of the national programme for the creation of small enterprises and jobs in the second economy.  This programme forms part of government’s Accelerated and Shared Growth Initiative of South Africa (ASGI-SA).

Prof Frans Swanepoel, Director of the UFS Research Development Directorate and Dr Aldo Stroebel, senior researcher at the UFS Research Development Directorate, are working with a team of experts from the UFS on a draft implementation strategy for the national programme.  Both Prof Swanepoel and Dr Stroebel are also associated to the UFS Centre for Sustainable Agriculture.
 
“The strategy is being developed in collaboration with institutions like the Independent Development Trust, the Department of Agriculture, the National Development Agency and the Department of Trade and Industry,” says Prof  Swanepoel.  

The other team members of the UFS are Prof Basie Wessels, Director of the  Mangaung-University Community Partnership Programme (MUCPP) and Mr  Benedict Mokoena, project manager at the MUCPP.

Dr Stroebel was also member of the organising committee of a conceptualisation colloquium and stakeholder dialogue that was recently presented in Johannesburg.  The conference was attended by more than 400 delegates from government departments, higher-education institutions and civil society, including Dr Kobus Laubscher, member of the UFS Council.

The conference was facilitated by Ms Vuyo Mahlati, previously from the WK Kellogg Foundation’s Africa programme and opened by Ms Thoko Didiza, Minister of Agriculture and Land Affairs.   

“The colloquium formed the basis of an induction workshop during which a group of 150 individuals (50 teams of three) from all nine provinces, identified to initiate the implementation of the national programme, was trained and orientated towards an induction manual in collaboration with Hand-in-Hand, an Indian counterpart,” says Prof Swanepoel.

Dr Stroebel and Mr Benedict Mokoena formed part of the team to conceptualise and finalise this training manual.  The induction training includes a case study of a successful community self-help partnership model, namely the MUCPP at the UFS. Prof Wessels and Mr Mokoena are both playing a leading role in the further development of subsequent training initiatives throughout South Africa, in partnership with the relevant provincial departments.

“The involvement of the UFS in the programme is a compliment to us.  It reflects the value government sees in the use of academics and experts in the management of the ASGI-SA initiative.  It is also an indication of one of the aims of the UFS to play a role in South Africa and Africa and in the transformation and change that is taking place in our country,” says Prof Swanepoel.  

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
10 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept