Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

Top matriculants for Kovsies
2014-01-24

 

 
From left are: Saneliswe Khambule, Lungile Mkhungo, Jannie de Wet, Anje Venter, Siqiniseko Buthelezi and Abrille Beukes.
Photo: Hannes Pieterse

Hailing from top schools in KwaZulu-Natal (KZN), Naushad Mayat, Lungile Mkhungo and Siqiniseko Buthelezi share 20 distinctions between them. Leaving the province of the Zulu Kingdom for Bloemfontein, all three are at Kovsies to study as doctors.

Naushad obtained eight distinctions, an achievement that placed him in the top ten matriculants in KwaZulu-Natal. The former learner from Glenwood High School in Durban came fourth in the Umlazi District and tenth overall in the province. Enrolling for a degree in Medicine, he will join the list of outstanding health professionals Kovsies produce every year.

Lungile, who matriculated from Kingsway High School, attained seven distinctions and her average percentage was 90%. She received distinctions in English – 90%, IsiZulu – 94%, Mathematics – 83%, History – 92%, Physics – 89%, Life Sciences – 89% and Life Orientation – 93%. Lungile is not only clever, but also performed well in sports at her school, participating in netball, soccer and athletics. This future doctor is a proud resident of Wag-'n-Bietjie residence. 

Siqiniseko made history at his school, Maritzburg College, becoming the first black Head Prefect at the 150-year-old school, the oldest boys' high school in KZN and one of the oldest schools in South Africa. A gifted learner excelling in sport, culture and academics, Siqiniseko obtained five distinctions (English, Afrikaans, Life Orientation, Accounting and Life Sciences). His sporting prowess has seen him captaining Maritzburg College's first rugby team, as well as the KZN Academy team.

The three are joined by fellow KwaZulu-Natal resident, Saneliswe Khambule, Namibian Abrille Beukes and Free Staters Anje Venter and Jannie de Wet.

Saneliswe, a former learner of Menzi High School in Umlazi, received five distinctions in her final-year exams. The Emily Hobhouse resident registered for a Forensic Science degree and plans on doing her doctoral studies in this exciting career field.

Abrille Beukes is another future doctor and is all the way from Windhoek in Namibia. Abrille obtained a ‘one’ in all her subjects, the highest possible mark in the Namibian school system. The Windhoek-born student received high levels in Mathematics, Accounting, Physical Science, Biology, Afrikaans and English. As second best student in her home country, she will register for a Medicine degree.

Anja, the Free State’s top achiever, received an average percentage of 93% in the matric final exams. The former Eunice student obtained nine distinctions, an achievement that placed her in the national top 100 matriculants.  Anja enrolled for a BSc Actuarial Science degree and will be joined in class by former school friend, Jannie de Wet, who obtained a whopping ten distinctions. Jannie and Anja attended Universitas Primary School together, with Jannie finishing his school career at Jim Fouché High School, and just like Anja, he will also enrol for a BSc Actuarial Science degree.

Jannie obtained distinctions in Afrikaans, English, Mathematics, Mathematics (third paper), Life Orientation, Accounting, Physical Science, Life Science, Economics and Information Technology. Jannie is also the Volksblad and the University of the Free State’s 2013 Matriculant of the Year.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept