Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

UFS SIFE is the best in SA!
2004-07-09

The SIFE team celebrates their victory with Jack Shewmaker, founder of SIFE in 1975 and past-president of Walmart in the USA, and Moses Kgosana, Chairman of KPMG SA.

The Students in Free Enterprise (SIFE) team of the University of the Free State competed in the National SIFE championships on Thursday, June 17, 2004 at Ceasar’s Convention Centre in Johannesburg.

Strong competition was experienced from the other ten participant SA universities, e.g. the Universities of the Western Cape, Kwazulu-Natal, Cape Town and RAU, but die UFS SIFE team retained the national championship for the third year running.

The team will now represent South Africa and the University of the Free State in Barcelona, Spain at die SIFE World Cup. The competition will be held from 22 to 24 September 2004.

The presentation team members for the competition were Tsholofelo Tlhomelang, Imameleng Matete, Kenneth Lefa, Kabelo Lephaka, Nadia van Staden, Tshepo Mahloko (Multi-Media), Werner Schmidt (Faculty Advisor). Supporting the presentation team were Lineo Peete, Keketso Ntene, Ruth Morienyane, Motaung Mathaba, Tshireletso Seekoe, Peter Letsoalo, Obakeng Msuthwana, Tshepiso Lebentle, JC Langeveldt and Michelle Stanley.

SIFE is a world-wide non-profit organisation with the express aim of encouraging students to spread their business knowledge - gained in the classroom - to the community, to promote and expand the principles of free enterprise.( www.sife.org )

The criteria by which SIFE-projects are measured are the following:

• How free markets work in the global economy.
• How entrepreneurs succeed by identifying a market need and then profitably producing and marketing a product or service to fill that need.
• The personal entrepreneurial, communications, technology and financial management skills needed to successfully compete.
• Practicing business in an ethical and socially responsible manner that supports the principles of a market economy.
• Measuring the results of projects, utilizing mass media and the Internet, involving non-business majors and utilizing a Business Advisory Board, communicating the program through a written report and verbal presentation.

The UFS’ SIFE-team’s presentation complied with all the above mentioned criteria. SIFE UFS’ education drive stretched from primary school learners, to adults who had been working for thirty years – this diverse group was taught about the free market system and its value in the global village. Business ethics and basic business principles were communicated in a fun and interactive way to learners. High-level business advice was given to entrepreneurs who started new projects, e.g. a brick-maker, and marketing advice were given to existing businesses in need of expansion.

If you are interested in helping SIFE UFS achieve its goals, e-mail Werner Schmidt at
schmidtw.ekw@mail.uovs.ac.za or phone him at 051 – 401 3376.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept