Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

UFS Council unanimously reappoints Dr Khotso Mokhele as Chancellor
2015-04-02

 

Dr Khotso Mokhele, Chancellor of the University of the Free State

The Council of the University of the Free State (UFS) unanimously reappointed Dr Khotso Mokhele as Chancellor during its quarterly meeting held on 13 March 2015. He was first appointed in this portfolio by the Council on 4 June 2010.

“It is an honour for the Council to reappoint someone of this stature as Chancellor of the UFS. With his solid academic background and high profile in the business world, Dr Mokhele has been a great asset to the UFS. On behalf of the Council and the university community, I extend a word of appreciation for the work he has done during his first term as Chancellor of the UFS. He is an exceptional leader, and the university community is looking forward to have him as Chancellor for a second term,” said Judge Ian van der Merwe, Chairperson of the UFS Council.

Dr Mokhele was awarded a BSc Agriculture from Fort Hare University, and continued his studies at the University of California Davis (USA) on the Fulbright-Hays Scholarship Programme, completing his MSc (Food Science) and PhD (Microbiology). He was subsequently a postdoctoral fellow at Johns Hopkins University School of Medicine (USA) and the University of Pennsylvania School of Medicine (USA). Dr Mokhele is the recipient of honorary doctorates from nine South African universities including the UFS, and from Rutgers University in the USA.

He was Chairman of the Rhodes Scholarship Selection Committee for Botswana, Malawi, Namibia, Lesotho and Swaziland (2007-2011), and served on the South Africa at Large Rhodes Scholarship Selection Committee for more than 10 years. As President and Chief Executive Officer (CEO) of the Foundation for Research Development (1996-1999) and the NRF from 1999 to 2006, Dr Mokhele played a central role in providing visionary and strategic direction to the South African science system. He was the Founder President of the Academy of Science of South Africa (ASSAf), Founder President and CEO of the National Research Foundation (NRF), Chairperson of the Economic Advisory Council to the Premier of the Free State (2001-2004), and a member of the Advisory Council on Innovation to the Minister of Science and Technology (2003-2007). His role in securing government and international support for the Southern African Large Telescope Project (SALT) is evidence of his dedication to science in South Africa. The success of this project laid the basis for South Africa being selected to host more than 70% of the Square Kilometre Array, an international mega telescope for radio astronomy.

In recognition of his contribution to the development of science, he was the recipient of the Technology Top 100 Lifetime Achievers Award in 2009 and the National Science and Technology Forum Award in 2005. His role in science is recognised internationally. He was an elected Vice-President: Scientific Planning and Review of the International Council for Science and Chairperson of its Committee for Scientific Planning and Review (2005-2008) as well as a member of the Committee on Developing and Transition Economy Countries of the International Social Science Council (2008-2010). He also represented South Africa on the executive board of UNESCO, and was awarded the Member Legion of Honour of the Republic of France for his work in strengthening scientific ties between South Africa and France.

Dr Mokhele currently serves as Special Advisor to the Minister of Science and Technology, the Honourable Naledi Pandor. His current corporate positions include: Non-Executive Chairman: Board of Directors, Impala Platinum Holdings Ltd (Implats); Lead Independent Non-Executive Director: African Oxygen Ltd (Afrox); Non-Executive Director of Zimbabwe Platinum Holdings Ltd (Zimplats); Hans Merensky Holdings Ltd; and Tiger Brands Ltd. He is the President of the Hans Merensky Foundation (South Africa) and a Trustee of SciDev.Net (a web-based scientific magazine based in London, UK) and Start International Inc (USA).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept