Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

UFS celebrates Kagiso Trust’s 30 years of commitment to the empowerment of impoverished communities
2015-07-15

From the left are: MEC Tate Makgoe, Free State Department of Education; Busi Tshabalala, Thabo Mofutsanyana Education District Director; Dean Zwo Nevhutalu,  Kagiso Trust Trustee  and UFS Director of Community Engagement, Bishop, Billy Ramahlele.
Photo: ?Thabo Kessah

Future sustainable partnerships in education will survive only if all partners are committed, honest, and transparent.

This is the view expressed by the Free State MEC for Education and UFS Council member, Tate Makgoe, during the panel discussion at the Qwaqwa Campus of the University of the Free State celebrating Kagiso Trust’s 30 years of commitment to the empowerment of impoverished communities. The topic was “The future partnership models for education in Africa”.

“Over the years, the partnership between the Free State Department of Education, the UFS, and Kagiso Trust has helped to expose the potential in our mainly rural children in the Qwaqwa area of the Thabo Mofutsanyana district,” said Makgoe.

”When we started in 2009, the matric pass rate in the district was 64%, and this rose to 87% in 2014. In Qwaqwa alone, we have managed to build 51 computer and 26 physical sciences laboratories. It was these laboratories that enabled the Free State to be the best performing province in the Physical Sciences in 2013,” added Makgoe.

“None of these achievements would have been possible if all the partners had not been committed to the course. Partnerships built on honesty and transparency are the best model, which we hope to export to other provinces and, indeed, countries,” Makgoe said.

Representing the UFS on the panel was the Director of Community Engagement, Bishop Billy Ramahlele, who added that collaborations can be successful only if the leadership was exemplary.

“As the university, we have had many collaboration with various government departments, and great strides have been achieved only with the Department of Education under the leadership of MEC Makgoe,” said Ramahlele.

”With the MEC on board, the UFS ended up dedicating its South Campus in Bloemfontein to supporting Free State schools. We now have 70 schools that benefit from live television broadcasts of lessons by some of our outstanding academics. This also enables our best academics to make a valued contribution to empowering our teachers. It also allows the university to maximise scarce resources to attain social cohesion,” he said.

In his remarks, Kagiso Trust Trustee, Dean Zwo Nevhutalu, said that Kagiso Trust was looking forward to continue working with its partners to maximise outcomes through limited resources.

“Kagiso Trust will continue to work with the poor and the marginalised and there is no better partner than the government itself. The government provides basic services, and education is one of them. This allows us to be innovative and not just dump books and equipment at schools because we are forced to by our corporate social investment obligations. Therefore, we challenge the government also to be innovative in building a sustainable future partnership model in education,” he said.

Among the dignitaries attending the panel discussion were Kagiso Trust Chairman, Dr Frank Chikane, and the late Dr Beyers Naude’s family.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept