Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story André Damons | Photo Supplied
zebrafish-blue-in-aquarium
Zebrafish blue in an aquarium.

A researcher from the University of the Free State (UFS) hopes to make living with epilepsy and other diseases of the central nervous system (CNS) easier by using South African plants extracts which may have anti-epileptic properties and testing them on zebrafish larvae.

Prof Anke Wilhelm, Associate Professor and Divisional Head of Organic Chemistry in the UFS Department of Chemistry, focuses her research on the isolation of active GABAergic compounds (substances that affect the brain’s GABA system, which helps control nervous system activity) by using a test that measures the movement of zebrafish larvae.

Even though obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process, Prof Wilhelm hopes to contribute to the better pain management of people suffering from epilepsy and diseases of the CNS through an affordable alternative drug with less side effects.

The tests are done in a zebrafish bioassay (an analytical method to determine the potency of a substance by its effect on living animals) housed at the UFS’ Chemistry Department.

Why zebrafish larvae?

Prof Wilhelm, who is a National Research Foundation Y2-rated synthetic organic chemist, says zebrafish share about 70% of their genes with humans, and about 84% of human genes known to be associated with diseases have a counterpart in zebrafish. This makes them a valuable model for studying human biology and disease.

“Zebrafish are powerful tools for modelling a wide range of CNS diseases, contributing significantly to the understanding of disease mechanisms and the development of potential treatments,” she says. “Mood disorders, anxiety, insomnia, and attention deficit hyperactivity disorder (ADHD) are all diseases which may be studied through this bioassay.”

She explains that the zebrafish larvae are studied seven days after fertilisation in their bioassay. The larvae are incubated with the specific plant extract at a certain (non-toxic) concentration for three hours. Pentylenetetrazol (PTZ), a GABAA receptor antagonist that has been extensively used in rodent models for acute seizure and anxiety, is then administered to induce concentration-dependent seizures in the zebrafish larvae.

“GABA receptor antagonists are drugs that inhibit the action of gamma-aminobutyric acid, the chief inhibitory neurotransmitter in the mammalian central nervous system,” Prof Wilhelm says. “A specialised infrared camera is then used to track the movement of the larvae inside a chamber. The data is then converted into a graph which shows the movement of each larva over 30 minutes.

“If lowering of movement is observed at a specific concentration it means that the plant extract may have the potential to be used as an epileptic drug, since it has the ability to counteract the induced seizure in the larvae. This bioassay is extremely useful in drug discovery and toxicity screening of plant extracts.”

Zebrafish embryos, she says, develop quickly, with major organs forming within 36 hours of fertilisation. This rapid development allows researchers to observe the effects of experiments in a short period. The maintenance of a zebrafish model is less costly and labour-intensive than using a rodent model. “The use of zebrafish larvae allows for high-throughput screening due to their small size and transparency, which facilitates observation of CNS-related effects. Their genetic and physiological similarities to humans make them a valuable model for early-stage drug discovery.”

Potential uses

The next step in the research, according to Prof Wilhelm, is to identify a single compound from a natural source which may have potential anti-epileptic activity while causing less side effects than current drugs on the market. Researchers would then investigate the possibility of synthesising such a compound on a large scale, to eliminate the use of a natural resource and promote sustainability.

“Many plant extracts which I have screened show a synergistic effect in the zebrafish bioassay, meaning that the extract or the combination of compounds shows potential, but the isolated compounds are inactive. Even if a plant extract shows promise in preclinical and early clinical studies, obtaining regulatory approval for use as a treatment for epilepsy is a long and complex process.

“This includes demonstrating consistent efficacy, safety, and quality in large-scale clinical trials. One of the major challenges in using plant extracts is the lack of standardisation. The concentration of active compounds in plant extracts can vary depending on factors like the plant's growing conditions, harvest time, and extraction methods. This variability makes it difficult to ensure consistent efficacy and safety, therefore this is a time-consuming process.”

Green chemistry

After being approached by Dr Glen Taylor, Senior Director of the UFS Directorate Research Development (DRD), in 2017, regarding funding for Noldus Daniovision equipment, Prof Wilhelm received training from Prof Matthias Hamburger of the University of Basel in Switzerland on how to use such equipment. The larval zebrafish locomotive bioassay was established at the UFS Chemistry Department during 2017 and 2018 and now provides a third-stream income for the department, in conjunction with the Department of Genetics, where the adult zebrafish are housed.

Prof Wilhelm’s other research interests include green chemistry, food sustainability, and recycling. She is looking into green extraction techniques using non-conventional extraction methods to recover valuable bioactive compounds from agricultural and food residues. “Techniques like ultrasound, microwave-assisted extraction, and the use of deep eutectic solvents are becoming popular for their efficiency and alignment with circular economy principles.”

News Archive

UFS researcher fills void in South African policing history
2017-01-02

Description: Dr Cornelis Muller Tags: Dr Cornelis Muller 

Currently a Postdoctoral fellow in the International
Studies Group, Dr Cornelis Muller’s PhD thesis explores
late nineteenth century South African policing on the
Witwatersrand.
Photo: Rulanzen Martin

“I used policing on the Witwatersrand as a lens through which to examine aspects relating to state formation within the South African Republic.”

This is how Dr Cornelis Muller, a postdoctoral fellow in the International Studies Group at the University of the Free State (UFS), described his PhD thesis called Policing the Witwatersrand: A history of the South African Republic Police, 1886-1899. The thesis fills an empirical void in the history of settler colonial policing in South Africa.

His research was also featured in the South African Historical Journal, which is published by Routledge. Dr Muller received his PhD from the UFS during the 2016 Winter Graduation ceremonies. He received a scholarship from the university to conduct his three-year research.

Relationship between police and state examined

The study presents itself as an institutional biography in which the relationship between the South African Republic Police (known as the Zarps), the state, and broader society are examined. The period under investigation was a time when political, economic, and social complexities on the Witwatersrand created tension between South Africa and Great Britain.

An important theme throughout the thesis is the relationship between the police, the mining industry, and the so-called Uitlander community. Crime was also an important contributing factor to the complex relationship that developed between the Zarps and the policed in Johannesburg’s formative years.

“Johannesburg was a town under siege by a variety of crimes which ranged from vagrancy, drunkenness, gambling, and prostitution to robbery, murder, and assault,” said Dr Muller.

Archives in South Africa and Great Britain consulted
“My thesis follows a chronological approach in which various themes accounting for the development of the police on the Witwatersrand are highlighted.” Framed within the bureaucratic and administrative functioning of the Zarps, he examined aspects relating to crime, crisis, and conflict between the police and society. The thesis also details the relationship between the police and Johannesburg’s black community.

As with any historical research, it comprised internal and external source criticism and content analyses of a wide range of archival records.

Dr Muller had the opportunity to visit several archives and libraries in South Africa and Great Britain. “Some of the more important archival collections were assessed at the National Archives in Pretoria.” These included the Archive of the State Attorney and the Archive of the Magisterial District of Johannesburg.

“My study thus adds to scholarship that seeks to provide a more nuanced understanding of the South African Republic’s administrative functioning and internal politics in the late nineteenth century,” concluded Dr Muller.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept