Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Precious Shamase | Photo Kaleidoscope Studios
Sellwane Moloi
Sellwane Jeanette Moloi celebrates graduating with a PhD in plant stress biology, contributing vital research toward global food security through drought-tolerant wheat studies.

Embarking on a PhD is a transformative journey, one filled with intellectual challenges, personal growth, and the potential to contribute meaningfully to one's field. For Sellwane Jeanette Moloi – who has graduated with her PhD on Friday 4 April during the afternoon session – the path was illuminated by a deep fascination with plants and a determination to address the critical issue of global food security.

 

A spark of curiosity

"The initial spark came from a deep curiosity about plants," Moloi shared. "I was intrigued by how plants function and the key mechanisms that help them survive when exposed to various environmental stress factors. Learning different techniques used to study and analyse plant responses to environmental factors made me even more intrigued." This curiosity fuelled a rigorous exploration into plant stress biology, focusing on how wheat thrives under drought conditions.

 

Navigating the challenges

Reflecting on the experience, however, the PhD journey was not without its hurdles. "One of the most challenging aspects was staying motivated and managing pressure," Moloi confessed. "Setbacks and slow progress can also be overwhelming." Overcoming these obstacles required a strategic approach: "I had to break down larger tasks into manageable tasks and also seek support from my supervisors."

Doubts inevitably arose, especially when experiments did not go as planned. "There were moments when I asked myself what I had actually gotten myself into," she admitted. However, the unwavering support of supervisors, colleagues, friends, and family provided the necessary reassurance. "They always assured me things would work out; I needed to hang in there."

 

Key discoveries and achievements

Amid the challenges, significant discoveries were made. Notably, Moloi found that a drought-tolerant wheat variety suppressed photosynthesis as a potential strategy to avert oxidative stress damage, maintaining cell membrane integrity during stressful conditions. This unexpected turn stressed the complexity of plant survival mechanisms.

Moloi’s dedication and hard work culminated in significant achievements, including winning the best PhD poster in plant physiology at the 46th South Africa Association of Botanists Conference in 2020, 3rd Prize at the University of Johannesburg Postgraduate Symposium in 2023 and publishing two research articles in high-impact journals. These accomplishments are a testament to her research prowess and contribution to the field.

 

Developing essential skills

Beyond the research itself, the PhD journey fostered critical skills vital for future success. ‘Critical thinking, logical reasoning, and problem-solving’ were highlighted as key takeaways. "As a PhD student, your mind is constantly engaged in critically analysing results and providing logical reasoning. I believe these skills are valuable in tackling certain situations and providing solutions to problems."

 

Balancing life and research

Balancing research with other aspects of life proved challenging. "That was challenging, but I created a schedule that worked for me," the graduand explained. "This included dedicating certain days (weekends or holidays) or hours to specific tasks, such as lab work or writing. One thing I would advise a PhD student is that they should make time to rest to avoid burnout."


Contribution to food security

Moloi's research holds significant implications for global food security, a pressing issue in the face of climate change and a growing population. "I hope my research will provide insight into how wheat as a cereal crop thrives under drought stress conditions, and the information can be used by plant breeding initiatives in developing more drought-tolerant crops," she stated. "The opportunity to contribute to the field of plant stress biology – my research focuses on understanding plant response mechanisms under drought, and acquiring such information can address issues related to global food security."


Advice for future PhD candidates

For students embarking on their PhD journey, Moloi offered valuable advice: "This degree requires one to be highly motivated and ask for help whenever there are setbacks. There will always be setbacks in research; you need to go back to the drawing board and look for solutions." She also emphasised the importance of seeking support for mental and emotional well-being. "It is okay to feel overwhelmed; the work can be too much at times. Students need to ask for help. We have professionals on campus who can assist with mental or emotional issues."

Furthermore, Moloi shared personal lessons: "Time management and prioritising important tasks. I also learned that it is important to allow yourself to rest. This degree can affect your mental or emotional health." And a candid reflection: "I did not have much of a social life, and I spent most of my time in the lab."

 

Looking ahead

With a PhD in hand, Moloi aspires to become an expert in her field, collaborating with other researchers and mentoring future students. Her journey exemplifies the dedication, resilience, and intellectual curiosity required to excel in academia and contribute to addressing pressing global challenges.

The university provided essential support throughout her studies, ensuring access to facilities even during the COVID-19 pandemic. "I always had access to the facilities on campus to do my research, even during the COVID-19 pandemic."

Celebrating milestones along the way was crucial, with fellow postgraduates sharing in each other's achievements. "My fellow postgraduates and I often went out for lunch to celebrate everyone's achievements." And the support system was extensive: "Everyone – family, supervisors, friends, and colleagues.”

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept