Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Andre Damons | Photo Andre Damons
DrSophie-Biskop_ProfFrancois-Engelbrecht
Dr Sophie Biskop from the Department of Geography at the Schiller University Jena, Germany, and Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, at the Southern African Mountain Conference (SAMC).

The severe El Niño drought of 2015/16, which culminated in the Vaal dam reaching an alarming low water level (~25%), prompted scientists to try and predict whether climate change could bring a drought so severe and long lasting that Gauteng could run out of water. 

Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, is one of the scientists working on this project and says though they cannot predict a Day Zero drought with certainty, he thinks it is possible that Gauteng might run out of water in the 2030s or 2040s.

 “This is the biggest climate change risk South Africa faces”, he said.  

Prof Engelbrecht and Dr Sophie Biskop from the Institute of Geography at the Friedrich Schiller University Jena, Germany, together with other scientists are working on a project involving hydrological modelling to predict and prevent a Day Zero from happening. Dr Biskop presented their research paper titled ‘Projected hydrological futures of South Africa's mega-dam region’ at the second Southern African Mountain Conference (SAMC2025) in March, indicating there is a high risk that the water demand in Gauteng will exceed available water resources within the Integrated Vaal River System (IVRS) under future climate change.

 

Gauteng may be severely compromised

The IVRS, a large, complex water system comprising water resources of different river basins, and several mega-dams within, has been constructed to secure the water supply of the Gauteng province, the economic hub in South Africa. 

According to the researchers, Southern Africa is a water-stress hot spot and is projected to become significantly warmer and likely also drier under global climate change, increasing the risk of devastating hydrological droughts. The IVRS, Dr Biskop told the attendees, is vulnerable to the occurrence of multi-year droughts as experienced between 2012 and in 2016. The alarming low water level of the Vaal dam after a period of drought of 2015/16 provided early warning that water security of Gauteng may be directly and severely compromised in a changing climate. Potential evapotranspiration will increase as a consequence of strong regional warming.

 

Answering questions

“There is consequently a high risk that the water demand in the Gauteng province will exceed available water resources within the IVRS under future climate change. This raises the question if under ongoing climate change the natural hydrological system (without considering water transfers between dam catchments) can maintain dam levels in South Africa’s eastern mega-dam region, and particularly within the Lesotho Highlands,” explained Dr Biskop. 

 “To answer this question, the aim of our study is to quantify future water balance changes of several dams under changing climate conditions using the Jena Adaptable Modelling System (JAMS), a software framework for component-based development of environmental models. For this purpose, we build process-based hydrological models for several dam catchments.”

She said an ensemble of high-resolution regional climate change projections is subsequently used as forcing, to generate future hydrological projections. The analysis of projected changes in hydrological system components (precipitation, evapotranspiration, run-off) provides probabilistic estimates of the occurrence of a regional climate change tipping point - when the natural water supply can no longer achieve the full storage capacity of the mega-dams which supply the Gauteng region.

 

Working to prevent Day Zero 

According to Prof Engelbrecht, they are working with the City of Johannesburg, the National Department of Water and Sanitation and Rand Water on this project. Their hope for this research is to create awareness in order to try and prevent Day Zero from happening. They also hope to assist these role players in building resilience and help them prepare for Day Zero. Their work with the City of Johannesburg also includes helping the city to reduce water wastage and change water users’ behaviour as well as formulating a disaster management plan should Day Zero happen. 

The Southern African Mountain Conference (SAMC) series is unique as it seeks to integrate science, policy and practitioner sectors for sustainable interventions in southern African mountains. SAMC events are conceptualised by the Afromontane Research Unit (ARU) of the University of the Free State (UFS), the African Mountain Research Foundation (AMRF) and Global Mountain Safeguard Research (GLOMOS), a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security. These three organisations form the Primary Partners, with the SAMC series being implemented by The Peaks Foundation (a non-profit company). SAMC2025 is being held under the patronage of UNESCO.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept