Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Andre Damons | Photo Andre Damons
DrSophie-Biskop_ProfFrancois-Engelbrecht
Dr Sophie Biskop from the Department of Geography at the Schiller University Jena, Germany, and Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, at the Southern African Mountain Conference (SAMC).

The severe El Niño drought of 2015/16, which culminated in the Vaal dam reaching an alarming low water level (~25%), prompted scientists to try and predict whether climate change could bring a drought so severe and long lasting that Gauteng could run out of water. 

Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, is one of the scientists working on this project and says though they cannot predict a Day Zero drought with certainty, he thinks it is possible that Gauteng might run out of water in the 2030s or 2040s.

 “This is the biggest climate change risk South Africa faces”, he said.  

Prof Engelbrecht and Dr Sophie Biskop from the Institute of Geography at the Friedrich Schiller University Jena, Germany, together with other scientists are working on a project involving hydrological modelling to predict and prevent a Day Zero from happening. Dr Biskop presented their research paper titled ‘Projected hydrological futures of South Africa's mega-dam region’ at the second Southern African Mountain Conference (SAMC2025) in March, indicating there is a high risk that the water demand in Gauteng will exceed available water resources within the Integrated Vaal River System (IVRS) under future climate change.

 

Gauteng may be severely compromised

The IVRS, a large, complex water system comprising water resources of different river basins, and several mega-dams within, has been constructed to secure the water supply of the Gauteng province, the economic hub in South Africa. 

According to the researchers, Southern Africa is a water-stress hot spot and is projected to become significantly warmer and likely also drier under global climate change, increasing the risk of devastating hydrological droughts. The IVRS, Dr Biskop told the attendees, is vulnerable to the occurrence of multi-year droughts as experienced between 2012 and in 2016. The alarming low water level of the Vaal dam after a period of drought of 2015/16 provided early warning that water security of Gauteng may be directly and severely compromised in a changing climate. Potential evapotranspiration will increase as a consequence of strong regional warming.

 

Answering questions

“There is consequently a high risk that the water demand in the Gauteng province will exceed available water resources within the IVRS under future climate change. This raises the question if under ongoing climate change the natural hydrological system (without considering water transfers between dam catchments) can maintain dam levels in South Africa’s eastern mega-dam region, and particularly within the Lesotho Highlands,” explained Dr Biskop. 

 “To answer this question, the aim of our study is to quantify future water balance changes of several dams under changing climate conditions using the Jena Adaptable Modelling System (JAMS), a software framework for component-based development of environmental models. For this purpose, we build process-based hydrological models for several dam catchments.”

She said an ensemble of high-resolution regional climate change projections is subsequently used as forcing, to generate future hydrological projections. The analysis of projected changes in hydrological system components (precipitation, evapotranspiration, run-off) provides probabilistic estimates of the occurrence of a regional climate change tipping point - when the natural water supply can no longer achieve the full storage capacity of the mega-dams which supply the Gauteng region.

 

Working to prevent Day Zero 

According to Prof Engelbrecht, they are working with the City of Johannesburg, the National Department of Water and Sanitation and Rand Water on this project. Their hope for this research is to create awareness in order to try and prevent Day Zero from happening. They also hope to assist these role players in building resilience and help them prepare for Day Zero. Their work with the City of Johannesburg also includes helping the city to reduce water wastage and change water users’ behaviour as well as formulating a disaster management plan should Day Zero happen. 

The Southern African Mountain Conference (SAMC) series is unique as it seeks to integrate science, policy and practitioner sectors for sustainable interventions in southern African mountains. SAMC events are conceptualised by the Afromontane Research Unit (ARU) of the University of the Free State (UFS), the African Mountain Research Foundation (AMRF) and Global Mountain Safeguard Research (GLOMOS), a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security. These three organisations form the Primary Partners, with the SAMC series being implemented by The Peaks Foundation (a non-profit company). SAMC2025 is being held under the patronage of UNESCO.

News Archive

Democracy and traditional leadership in rural areas explored
2017-09-22

Description: Democracy Tags: Democracy, customary law, human rights, research, constitution 

Prof Lungisile Ntsebeza, recipient of the NRF Hamilton
Naki Award
Photo: Supplied


The Free State Centre for Human Rights held a presentation by Prof Lungisile Ntsebeza on 7 September 2017 at the University of the Free State (UFS) Bloemfontein Campus on the topic of democracy and traditional leadership in rural areas. Prof Ntsebeza is the holder of the AC Jordan Chair in African Studies at the University of Cape Town and the holder of the National Research Foundation (NRF) Research Chair in Land Reform and Democracy in South Africa. 

Conflict between democracy and traditional rule
The topic of democracy and traditional leadership in the rural areas is an example of the tension between democracy and customary law governing the appointment of traditional leaders (headmen) that is currently at play in many parts of the country. Prof Ntsebeza made reference to a court case in the Eastern Cape, where a community successfully challenged the appointment of a headman by the royal family of the area. The contention was whether royal families could appoint headmen in rural communities or if those communities ought to democratically elect their own leaders. He argued that in this specific case, the democratic imperatives of the Constitution did not conflict with customary law because of the particular communal practice of electing leaders. 

The Constitution and customary law

The Constitution of South Africa recognises customary law provisions which are not in conflict with its fundamental values. Difficult legitimacy problems may arise where customary practices are different from those governing this particular case. Ultimately the Constitutional Court would be called upon to resolve inherent tensions and develop customary law in line with the direction foreseen in the Constitution.

Student engagement as a vehicle for change
The event was attended by UFS staff and fourth-year LLB students in the Faculty of Law, and was funded by the Free State Centre for Human Rights at UFS. The programme is one of several that the centre seeks to utilise in engaging students with researchers and scholars in the field of law and human rights. Prof Ntsebeza has given academic presentations on various related and trending topics in the current academic climate, such as decolonising the curriculum, Cecil John Rhodes and others. He was recently awarded the Hamilton Naki Award at the 2017 National Research Foundation Awards.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept