Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Andre Damons | Photo Andre Damons
DrSophie-Biskop_ProfFrancois-Engelbrecht
Dr Sophie Biskop from the Department of Geography at the Schiller University Jena, Germany, and Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, at the Southern African Mountain Conference (SAMC).

The severe El Niño drought of 2015/16, which culminated in the Vaal dam reaching an alarming low water level (~25%), prompted scientists to try and predict whether climate change could bring a drought so severe and long lasting that Gauteng could run out of water. 

Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, is one of the scientists working on this project and says though they cannot predict a Day Zero drought with certainty, he thinks it is possible that Gauteng might run out of water in the 2030s or 2040s.

 “This is the biggest climate change risk South Africa faces”, he said.  

Prof Engelbrecht and Dr Sophie Biskop from the Institute of Geography at the Friedrich Schiller University Jena, Germany, together with other scientists are working on a project involving hydrological modelling to predict and prevent a Day Zero from happening. Dr Biskop presented their research paper titled ‘Projected hydrological futures of South Africa's mega-dam region’ at the second Southern African Mountain Conference (SAMC2025) in March, indicating there is a high risk that the water demand in Gauteng will exceed available water resources within the Integrated Vaal River System (IVRS) under future climate change.

 

Gauteng may be severely compromised

The IVRS, a large, complex water system comprising water resources of different river basins, and several mega-dams within, has been constructed to secure the water supply of the Gauteng province, the economic hub in South Africa. 

According to the researchers, Southern Africa is a water-stress hot spot and is projected to become significantly warmer and likely also drier under global climate change, increasing the risk of devastating hydrological droughts. The IVRS, Dr Biskop told the attendees, is vulnerable to the occurrence of multi-year droughts as experienced between 2012 and in 2016. The alarming low water level of the Vaal dam after a period of drought of 2015/16 provided early warning that water security of Gauteng may be directly and severely compromised in a changing climate. Potential evapotranspiration will increase as a consequence of strong regional warming.

 

Answering questions

“There is consequently a high risk that the water demand in the Gauteng province will exceed available water resources within the IVRS under future climate change. This raises the question if under ongoing climate change the natural hydrological system (without considering water transfers between dam catchments) can maintain dam levels in South Africa’s eastern mega-dam region, and particularly within the Lesotho Highlands,” explained Dr Biskop. 

 “To answer this question, the aim of our study is to quantify future water balance changes of several dams under changing climate conditions using the Jena Adaptable Modelling System (JAMS), a software framework for component-based development of environmental models. For this purpose, we build process-based hydrological models for several dam catchments.”

She said an ensemble of high-resolution regional climate change projections is subsequently used as forcing, to generate future hydrological projections. The analysis of projected changes in hydrological system components (precipitation, evapotranspiration, run-off) provides probabilistic estimates of the occurrence of a regional climate change tipping point - when the natural water supply can no longer achieve the full storage capacity of the mega-dams which supply the Gauteng region.

 

Working to prevent Day Zero 

According to Prof Engelbrecht, they are working with the City of Johannesburg, the National Department of Water and Sanitation and Rand Water on this project. Their hope for this research is to create awareness in order to try and prevent Day Zero from happening. They also hope to assist these role players in building resilience and help them prepare for Day Zero. Their work with the City of Johannesburg also includes helping the city to reduce water wastage and change water users’ behaviour as well as formulating a disaster management plan should Day Zero happen. 

The Southern African Mountain Conference (SAMC) series is unique as it seeks to integrate science, policy and practitioner sectors for sustainable interventions in southern African mountains. SAMC events are conceptualised by the Afromontane Research Unit (ARU) of the University of the Free State (UFS), the African Mountain Research Foundation (AMRF) and Global Mountain Safeguard Research (GLOMOS), a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security. These three organisations form the Primary Partners, with the SAMC series being implemented by The Peaks Foundation (a non-profit company). SAMC2025 is being held under the patronage of UNESCO.

News Archive

UFS first to mechanise agricultural technique
2006-05-09

    

Small farmers from Thaba `Nchu were the biggest group attending the farmers day at the UFS Paradys experimental farm.  From the left are Mr David Motlhale (a small farmer from Thaba 'Nchu), Prof Leon van Rensburg (lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader), Mr Nhlonipho Nhlabatsi (Agricultural Research Council, Glen), Ms Meisie Mthethwa (small farmer from Bloemspruit).  In front is Mr Patrick Molatodi (chairperson of the Tswelopele Small Farmer Association).
 

 

Some of the participants of the farmers day at the UFS Paradys experimental farm were from the left Prof Leon van Rensburg (lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader, Mr Patrick Molatodi (chairperson of the Tswelopele Small Farmers Association) and Prof Herman van Schalkwyk (Dean: UFS Faculty of Natural and Agricultural Sciences).

UFS first tertiary institution in world to mechanise agricultural technique
The University of the Free State (UFS) is the first tertiary institution in the world to mechanise the in-field rain water harvesting technique on a commercial scale.

The technique was recently demonstrated to about 100 small farmers at the UFS Paradys experimental farm outside Bloemfontein. 

“With this technique rain water is channeled to the plant and in this way food security is increased.  The advantage of the technique for commercial farmers lies in the reduced cultivation of land.  Small farmers will benefit from this because they can now move out into the fields and away from farming in their back yards,” says Prof Leon van Rensburg, lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader.    

Rain water harvesting is an antique concept that was used by communities before the birth of Christ.  In South Africa the technique is mainly used in the plots of small farmers where they make surface structures by hand. 

"The technique is also used for the first time by the UFS on commercial scale by means of the cultivation of a summer crop on 100 ha at the Paradys experimental farm,” says Prof Leon van Rensburg,

Of the farmers who attended the farmers day most represented about 42 rural communities in the vicinity of Thaba ‘Nchu.  A group of seven from KwaZulu-Natal also attended the proceedings.  These small farmers can for example apply this technique successfully on the 250-300 ha communal land that is available in the Thaba ‘Nchu area. 

The project is funded by the UFS and the National Research Foundation (NRF) and the farmers’ day was funded by the Water Research Commission.   

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
9 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept