Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Andre Damons | Photo Andre Damons
DrSophie-Biskop_ProfFrancois-Engelbrecht
Dr Sophie Biskop from the Department of Geography at the Schiller University Jena, Germany, and Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, at the Southern African Mountain Conference (SAMC).

The severe El Niño drought of 2015/16, which culminated in the Vaal dam reaching an alarming low water level (~25%), prompted scientists to try and predict whether climate change could bring a drought so severe and long lasting that Gauteng could run out of water. 

Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, is one of the scientists working on this project and says though they cannot predict a Day Zero drought with certainty, he thinks it is possible that Gauteng might run out of water in the 2030s or 2040s.

 “This is the biggest climate change risk South Africa faces”, he said.  

Prof Engelbrecht and Dr Sophie Biskop from the Institute of Geography at the Friedrich Schiller University Jena, Germany, together with other scientists are working on a project involving hydrological modelling to predict and prevent a Day Zero from happening. Dr Biskop presented their research paper titled ‘Projected hydrological futures of South Africa's mega-dam region’ at the second Southern African Mountain Conference (SAMC2025) in March, indicating there is a high risk that the water demand in Gauteng will exceed available water resources within the Integrated Vaal River System (IVRS) under future climate change.

 

Gauteng may be severely compromised

The IVRS, a large, complex water system comprising water resources of different river basins, and several mega-dams within, has been constructed to secure the water supply of the Gauteng province, the economic hub in South Africa. 

According to the researchers, Southern Africa is a water-stress hot spot and is projected to become significantly warmer and likely also drier under global climate change, increasing the risk of devastating hydrological droughts. The IVRS, Dr Biskop told the attendees, is vulnerable to the occurrence of multi-year droughts as experienced between 2012 and in 2016. The alarming low water level of the Vaal dam after a period of drought of 2015/16 provided early warning that water security of Gauteng may be directly and severely compromised in a changing climate. Potential evapotranspiration will increase as a consequence of strong regional warming.

 

Answering questions

“There is consequently a high risk that the water demand in the Gauteng province will exceed available water resources within the IVRS under future climate change. This raises the question if under ongoing climate change the natural hydrological system (without considering water transfers between dam catchments) can maintain dam levels in South Africa’s eastern mega-dam region, and particularly within the Lesotho Highlands,” explained Dr Biskop. 

 “To answer this question, the aim of our study is to quantify future water balance changes of several dams under changing climate conditions using the Jena Adaptable Modelling System (JAMS), a software framework for component-based development of environmental models. For this purpose, we build process-based hydrological models for several dam catchments.”

She said an ensemble of high-resolution regional climate change projections is subsequently used as forcing, to generate future hydrological projections. The analysis of projected changes in hydrological system components (precipitation, evapotranspiration, run-off) provides probabilistic estimates of the occurrence of a regional climate change tipping point - when the natural water supply can no longer achieve the full storage capacity of the mega-dams which supply the Gauteng region.

 

Working to prevent Day Zero 

According to Prof Engelbrecht, they are working with the City of Johannesburg, the National Department of Water and Sanitation and Rand Water on this project. Their hope for this research is to create awareness in order to try and prevent Day Zero from happening. They also hope to assist these role players in building resilience and help them prepare for Day Zero. Their work with the City of Johannesburg also includes helping the city to reduce water wastage and change water users’ behaviour as well as formulating a disaster management plan should Day Zero happen. 

The Southern African Mountain Conference (SAMC) series is unique as it seeks to integrate science, policy and practitioner sectors for sustainable interventions in southern African mountains. SAMC events are conceptualised by the Afromontane Research Unit (ARU) of the University of the Free State (UFS), the African Mountain Research Foundation (AMRF) and Global Mountain Safeguard Research (GLOMOS), a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security. These three organisations form the Primary Partners, with the SAMC series being implemented by The Peaks Foundation (a non-profit company). SAMC2025 is being held under the patronage of UNESCO.

News Archive

UFS receives R13,7 Million for Research into Prehistoric Organisms
2007-03-27

Some of the guests attending the launch of the research contract are: Dr Siyabulela Ntutela (Deputy Director: Biotechnology at the Department of Science and Technology), Dr Godfrey Netswera (Manager of Thuthuka and the Support Programme at the National Research Foundation (NRF)), Dr Esta van Heerden (Platform Manager and lecturer at the Department of Microbial, Biochemical and Food Biotechnology at the UFS), Mr Butana Mboniswa (Chief Executive Officer of BioPAD), and Mr Vuyisele Phehani (Portfolio Manager for BioPAD).
Photo: Leonie Bolleurs

The University of the Free State (UFS) has been awarded a massive R13,7 million contract to conduct research into prehistoric micro-organisms which live under extreme conditions, for example in mineshafts.

This is one of the biggest research contracts awarded to the UFS in recent years.

The biotechnology research contract was awarded to the UFS by BioPAD, a South African biotechnology company that brokers partnerships between researchers, entrepreneurs, business, government and other stakeholders to promote innovation and create sustainable biotechnology businesses.

The project is endorsed by the Department of Science and Technology and the National Research Foundation (NRF), which contributes to the bursaries of the 17 postgraduate students on the programme.

The contract involves the establishment of a Platform for Metagenomics -  a technique which allows researchers to extract the DNA from microbes in their natural environment and investigate it in a laboratory. 

“Through this platform we will be able to understand deepmine microbial populations
and their potential application in the search for life in outer space.  It is most likely
that, if life were to be found on other planets in our solar system, it would probably
resemble that which existed millions of years ago on earth.  Apart from all this, these
organisms have unique properties one can exploit in biotechnological application for
South Africa and its community,” said Dr Esta van Heerden, platform manager and
lecturer at the UFS Department of Microbial, Biochemical and Food Biotechnology.
She is assisted by her collegues, Prof. Derek Litthauer and Dr Lizelle Piater.

“The platform aims to tap into the unique genetic material in South African mines
which will lead to the discovery of new genes and their products.  These new and unique products will find application in the medical field (anti-cancer, anti-bacterial en anti-viral cures), the industrial sector (nanotechnology, commercial washing agents and the food industry), environmental sector (pollution management, demolition of harmful metals and other toxic waste),” said Dr Van Heerden.

According to Dr Van Heerden, the Metagenomics Platforms stems from the Life in
Extreme Environments (LExEN) programme which was started in 1994 by Princeton
University in the United States of America (USA) in South African mines with grants
from among others the National Aeronautics and Space Administration (NASA) and
the National Science Foundation (NSF) in the USA.  Other international collaborators
on the project include Geosynec Consultants Inc. (USA), Oak Ridge National
Laboratory (USA), the University of Tennessee (USA) and in South Africa the
Universities of the Witwatersrand, North West and Limpopo and companies like BHP
Billiton, MINTEK and mining companies like Harmony, Gold Fields and AngloGold
Ashanti.

The research field laboratory of the Metagenomics Platform, which was situated in
Glen Harvey, was moved to the Main Campus of the UFS in Bloemfontein.  “In this
way the university has become the central hub for all research programmes.  We are
also the liaison between the LExEN programme and the various mining companies
involved,” said Dr Van Heerden.  The new laboratory was introduced during the
launch of the research contract.

“Our decision to commit BioPAD to this project stems from the company’s commitment to advance human capacity development to strengthen South Africa’s research infrastructure.  It is also part of our aim to create and protect intellectual property,” said Mr Butana Mboniswa, Chief Executive Officer of BioPAD.

Talking on behalf of the UFS senior management, Prof. Teuns Verschoor, Vice-Rector
of Academic Operations, said that the university shares the excitement to be part of
the exploration of unknown forms of life, the discovery of new genes and
their products and in applying newly gained knowledge to better understand our
universe.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison 
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
27 March 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept