Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Andre Damons | Photo Andre Damons
DrSophie-Biskop_ProfFrancois-Engelbrecht
Dr Sophie Biskop from the Department of Geography at the Schiller University Jena, Germany, and Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, at the Southern African Mountain Conference (SAMC).

The severe El Niño drought of 2015/16, which culminated in the Vaal dam reaching an alarming low water level (~25%), prompted scientists to try and predict whether climate change could bring a drought so severe and long lasting that Gauteng could run out of water. 

Prof Francois Engelbrecht, a Professor of Climatology at the Global Change Institute (GCI), University of the Witwatersrand, is one of the scientists working on this project and says though they cannot predict a Day Zero drought with certainty, he thinks it is possible that Gauteng might run out of water in the 2030s or 2040s.

 “This is the biggest climate change risk South Africa faces”, he said.  

Prof Engelbrecht and Dr Sophie Biskop from the Institute of Geography at the Friedrich Schiller University Jena, Germany, together with other scientists are working on a project involving hydrological modelling to predict and prevent a Day Zero from happening. Dr Biskop presented their research paper titled ‘Projected hydrological futures of South Africa's mega-dam region’ at the second Southern African Mountain Conference (SAMC2025) in March, indicating there is a high risk that the water demand in Gauteng will exceed available water resources within the Integrated Vaal River System (IVRS) under future climate change.

 

Gauteng may be severely compromised

The IVRS, a large, complex water system comprising water resources of different river basins, and several mega-dams within, has been constructed to secure the water supply of the Gauteng province, the economic hub in South Africa. 

According to the researchers, Southern Africa is a water-stress hot spot and is projected to become significantly warmer and likely also drier under global climate change, increasing the risk of devastating hydrological droughts. The IVRS, Dr Biskop told the attendees, is vulnerable to the occurrence of multi-year droughts as experienced between 2012 and in 2016. The alarming low water level of the Vaal dam after a period of drought of 2015/16 provided early warning that water security of Gauteng may be directly and severely compromised in a changing climate. Potential evapotranspiration will increase as a consequence of strong regional warming.

 

Answering questions

“There is consequently a high risk that the water demand in the Gauteng province will exceed available water resources within the IVRS under future climate change. This raises the question if under ongoing climate change the natural hydrological system (without considering water transfers between dam catchments) can maintain dam levels in South Africa’s eastern mega-dam region, and particularly within the Lesotho Highlands,” explained Dr Biskop. 

 “To answer this question, the aim of our study is to quantify future water balance changes of several dams under changing climate conditions using the Jena Adaptable Modelling System (JAMS), a software framework for component-based development of environmental models. For this purpose, we build process-based hydrological models for several dam catchments.”

She said an ensemble of high-resolution regional climate change projections is subsequently used as forcing, to generate future hydrological projections. The analysis of projected changes in hydrological system components (precipitation, evapotranspiration, run-off) provides probabilistic estimates of the occurrence of a regional climate change tipping point - when the natural water supply can no longer achieve the full storage capacity of the mega-dams which supply the Gauteng region.

 

Working to prevent Day Zero 

According to Prof Engelbrecht, they are working with the City of Johannesburg, the National Department of Water and Sanitation and Rand Water on this project. Their hope for this research is to create awareness in order to try and prevent Day Zero from happening. They also hope to assist these role players in building resilience and help them prepare for Day Zero. Their work with the City of Johannesburg also includes helping the city to reduce water wastage and change water users’ behaviour as well as formulating a disaster management plan should Day Zero happen. 

The Southern African Mountain Conference (SAMC) series is unique as it seeks to integrate science, policy and practitioner sectors for sustainable interventions in southern African mountains. SAMC events are conceptualised by the Afromontane Research Unit (ARU) of the University of the Free State (UFS), the African Mountain Research Foundation (AMRF) and Global Mountain Safeguard Research (GLOMOS), a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security. These three organisations form the Primary Partners, with the SAMC series being implemented by The Peaks Foundation (a non-profit company). SAMC2025 is being held under the patronage of UNESCO.

News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept