Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 April 2025 | Story Precious Shamase | Photo Supplied
Qwaqwa NAS Achievements
From left to right Prof Richard Ocaya is an Associate Professor in the Department of Physics, Dr Tebogo Motsei and Dr Kamohelo Tshabalala

The Faculty of Natural and Agricultural Sciences (NAS) at the University of the Free State (UFS) Qwaqwa Campus is celebrating a year of remarkable achievements, showcasing the dedication and brilliance of its students and faculty. The 2024 academic year has been marked by outstanding academic performance, prestigious awards, and groundbreaking research, solidifying the faculty's commitment to excellence.


Academic excellence shines bright

The faculty's commitment to rigorous academic standards has yielded impressive results. This year, four doctoral candidates successfully obtained their PhDs, contributing valuable research to their respective fields. Furthermore, the dedication of the honours and master’s students was evident in their exceptional performance. Out of 25 honours students, an impressive 11 achieved distinctions, demonstrating their mastery of their subjects. Similarly, 5 out of 10 master’s students passed with distinctions, a testament to their advanced research capabilities and academic prowess.


Dr Tebogo Motsei: A beacon of innovation and excellence

Among the faculty's many successes, the achievement of Dr Tebogo Motsei stands out as a testament to the calibre of talent being nurtured on the UFS Qwaqwa Campus. Dr Motsei, who recently graduated from the campus, was awarded the prestigious CV Raman Scholarship by the Government of the Republic of India – a recognition bestowed upon only the most promising postgraduate students.

This highly competitive scholarship, named after the Nobel prize-winning physicist Chandrasekhara Venkata Raman, provided recipients with a six-month research opportunity in India. Dr Motsei conducted her research at the esteemed Central Electrochemical Research Institute (CECRI), under the guidance of Prof Arul Manuel Stephan and Prof Sabu Thomas, Vice-Chancellor of the Mahatma Gandhi University. CECRI – one of the most difficult Indian institutes to get admitted into – is part of the Council for Scientific and Industrial Research (CSIR).

Dr Motsei’s research focused on sodium-ion batteries and supercapacitors with lithium-sulphur integration, resulting in significant advancements in energy storage devices. Her innovative work has the potential to revolutionise the field, contributing to more efficient and sustainable energy solutions.   

Adding to her achievements, Dr Motsei also established Lesedi Innovations Pty, a company dedicated to the manufacturing of button batteries and cells of the CR2032 and 18650 form factors. This entrepreneurial endeavour highlights her commitment to translating research into practical applications that benefit society.

For her PhD studies, she was supervised by Prof Richard Ocaya in the Department of Physics, and co-supervised by Dr Kamohelo Tshabalala, Senior Lecturer in the Department of Physics. Prof Ocaya, proud of Motsei’s achievements, believes that this fellowship not only serves as a great motivation for students – especially on the Qwaqwa Campus – but also highlights the global relevance of the UFS, particularly the Department of Physics.


A message of pride and congratulations

Prof Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences, expressed her immense pride in the students and staff. "I would like to congratulate the NAS students and staff members on this fantastic achievement – it’s a sign of people going out of their way to do their best and make their research work despite any obstacles thrown in their way. These distinctions show that we have smart, dedicated, creative people in NAS, and I’m very proud of all of them. For students, this means great opportunities ahead, and for staff, it is a sure sign that they did something right in their mentorship and teaching. Thank you to this wonderful team," concluded Prof Le Roux.

The UFS Qwaqwa Campus congratulates all the graduates, distinguished students, and dedicated staff of the Faculty of Natural and Agricultural Sciences. Their accomplishments are a testament to the university's commitment to fostering academic excellence and innovation. The faculty continues to fly the UFS flag high, inspiring future generations of scientists and researchers.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept