Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 August 2025 | Story Precious Shamase
One Health research project
Pictured are Prof Steven Belmain, Dr Hayley Thompson, and Prof Lourens Swanepoel during their visit to South Africa to kick off a collaborative One Health research project aimed at addressing rodent-related health risks in townships – an initiative that unites local and international experts in the pursuit of safer, community-driven solutions.

A collaborative research project is underway in South African townships to combat the pervasive rodent problem and its impact on human health. Led by Prof Peter Taylor, Professor-in-Residence in the UFS Afromontane Research Unit and affiliated with the UFS Department of Zoology and Entomology, the initiative brings together experts from the UK's Natural Resources Institute (NRI), including Prof Steven Belmain and Dr Hayley Thompson, and South African institutions such as the UFS and the University of Venda.

This 'One Health' approach acknowledges the interconnectedness of human, animal, and environmental well-being. The team visited laboratory facilities at the UFS campuses in Bloemfontein and Qwaqwa, the latter being near Phuthaditjhaba township – a key research site alongside Lwamando in Limpopo.

The multidisciplinary project involves local farmers and university departments, integrating expertise in advanced techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry, molecular virology and microbiology, genome sequencing, and parasitology. Social scientists, such as Dr Shingirayi Chamisa, a lecturer in the UFS Department of Industrial Psychology, are also involved to understand community perceptions and current rodent control methods, including the impact on mental health.

The research will investigate the health risks associated with rodent infestations, including food contamination with poison residues and fungal toxins, and the transmission of disease to humans and livestock through direct contact or parasites. Practical trials will evaluate methods to reduce food contamination.

Significantly, the project will explore novel and humane rodent control strategies, such as contraceptive baits, offering a safer alternative to rodenticides. Recent concerns about rodenticide-related deaths in townships have increased pressure for safer, ecological solutions.

This research holds significant promise for developing sustainable and effective solutions to mitigate the negative impact of rodent pests on the health and livelihoods of township residents. The international and local collaboration, guided by a holistic 'One Health' perspective, marks a crucial step towards addressing this challenging issue. Prof Taylor expressed his appreciation for the enthusiastic engagement of all collaborators, highlighting the potential for a truly transdisciplinary project to find meaningful and ecologically sound solutions to rodent-borne pathogens and food contamination in South African townships.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept