Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 August 2025 | Story Precious Shamase
One Health research project
Pictured are Prof Steven Belmain, Dr Hayley Thompson, and Prof Lourens Swanepoel during their visit to South Africa to kick off a collaborative One Health research project aimed at addressing rodent-related health risks in townships – an initiative that unites local and international experts in the pursuit of safer, community-driven solutions.

A collaborative research project is underway in South African townships to combat the pervasive rodent problem and its impact on human health. Led by Prof Peter Taylor, Professor-in-Residence in the UFS Afromontane Research Unit and affiliated with the UFS Department of Zoology and Entomology, the initiative brings together experts from the UK's Natural Resources Institute (NRI), including Prof Steven Belmain and Dr Hayley Thompson, and South African institutions such as the UFS and the University of Venda.

This 'One Health' approach acknowledges the interconnectedness of human, animal, and environmental well-being. The team visited laboratory facilities at the UFS campuses in Bloemfontein and Qwaqwa, the latter being near Phuthaditjhaba township – a key research site alongside Lwamando in Limpopo.

The multidisciplinary project involves local farmers and university departments, integrating expertise in advanced techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry, molecular virology and microbiology, genome sequencing, and parasitology. Social scientists, such as Dr Shingirayi Chamisa, a lecturer in the UFS Department of Industrial Psychology, are also involved to understand community perceptions and current rodent control methods, including the impact on mental health.

The research will investigate the health risks associated with rodent infestations, including food contamination with poison residues and fungal toxins, and the transmission of disease to humans and livestock through direct contact or parasites. Practical trials will evaluate methods to reduce food contamination.

Significantly, the project will explore novel and humane rodent control strategies, such as contraceptive baits, offering a safer alternative to rodenticides. Recent concerns about rodenticide-related deaths in townships have increased pressure for safer, ecological solutions.

This research holds significant promise for developing sustainable and effective solutions to mitigate the negative impact of rodent pests on the health and livelihoods of township residents. The international and local collaboration, guided by a holistic 'One Health' perspective, marks a crucial step towards addressing this challenging issue. Prof Taylor expressed his appreciation for the enthusiastic engagement of all collaborators, highlighting the potential for a truly transdisciplinary project to find meaningful and ecologically sound solutions to rodent-borne pathogens and food contamination in South African townships.

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept