Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

Self-help building project helps to change lives
2017-12-15


 Description: Eco house read more Tags: Anita Venter, Start Living Green’, Earthship Biotecture Academy, construction skills 

Anita Venter, lecturer in the Centre for Development Support, with the residents of
the eco friendly house. Photo: Supplied

UFS PhD student Anita Venter did not know it in the beginning, but her doctoral research would eventually change her life and the lives of many others. 

The research was whether South Africa’s housing policies were socially and culturally responsive to grassroots reality in informal settlements. Venter agreed her research approach might have raised a few eye brows, but it was a journey she holds had more benefits than failures. 

Green living
For her case studies, Venter looked at ‘Start Living Green’ as a concept and further examined the implementation models of Earthship Biotecture Academy in New Mexico and Central America and the Long Way Home non-profit organisation in Guatemala. 

These groups train people with no specialised construction skills in applying and managing environmentally sound self-help building projects. Furthermore, their primary objectives were not building-related, but people-centred, with an advocacy role to create social, environmental and educational change through utilising the building technologies. 

It resulted in Venter signing up for a course in Guatemala to get the skills to implement her case studies here at home in Bloemfontein. 

An experimental mud, straw and waste material structure in her back yard grew into similar houses built in informal settlements, through the transfer of knowledge of indigenous building methods.  

Are rickety corrugated iron shacks only alternative?

Her case studies, one in Freedom Square in the Mangaung Metro Municipality, highlighted, among others, baffling tenure insecurities and “tangible conflicts” entrenched between Westernised and African perspectives on home ownership.

Venter says her thesis, in essence, did not oppose existing housing strategies but did challenge the applicability of an economically inclined model as the most appropriate housing option for millions of households living in informal settlements. 

The main findings of the case studies were that self-help building technologies and skills transfer could make a significant contribution to addressing housing shortages in the country; in particular in geographical locations such as the Free State province and other rural areas.

Venter’s own words after her academic endeavour are insightful: “These grassroots individuals’ courage to engage with me in unknown territories, gave me hope in humanity and inherent strength to keep on pursuing our vision of transforming informal settlements into evolving indigenous neighbourhoods of choice instead of only being living spaces of last resort.”

Positive results 
The study has had many positive results. The City of Cape Town is now looking at new innovative building technologies as a result. Most importantly Venter's study will open further discussions that necessarily challenge the status quo views in housing development. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept