Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

UFS celebrates establishment of a new department
2008-09-26

 

 At the celebration of the establishment of the Department of Genetics are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Johan Spies, head of the Department of Genetics at the UFS, Prof. Chris Viljoen, associate professor at the UFS Department of Haematology and Cell Biology and previously associated with the Department of Genetics; seated: Prof. Paul Grobler, associate professor at the UFS Department of Genetics.
Photo: Stephen Collett

UFS celebrates establishment of a new department

The establishment of the Department of Genetics in the Faculty of Natural and Agricultural Sciences at the University of the Free State (FS) was recently celebrated on the Main Campus in Bloemfontein.

The department, which formed part of the Department of Plant Sciences, is the only of its kind in the country that conducts research in behavioural genetics. “With behavioural genetics we try to determine if certain human behaviour is hereditary or if it is as a result of the environment. Although this is the fastest growing field of specialty in the United States of America, it is still an unknown field in South Africa,” says Prof. Johan Spies, head of the Department of Genetics.

The other specialty fields of the department are forensic genetics and conservation genetics. “Forensic genetics looks at the compilation of the DNA of animals. Because of our academics’ expertise, the department is regularly requested by the South African Police Service to assist them with establishing the origin of animals – especially in the case of game poaching. We recently completed a research project on cheetahs where we had to establish if they were acquired illegally of part of the farmer’s game. The research showed that the cheetahs were part of the farmer’s own breed,” says Prof. Spies.

Another specialty field of the department is conservation genetics where the genetic variance of animals is researched. A lot of research is done on vervet monkeys to determine from which area in the country they originate. The study must be completed before the 3000 vervet monkeys currently in rehabilitation centres are set free. The behaviour of monkeys in rehabilitation is also being researched.

Prof. Spies says: “Student figures in Genetics show an annual increase of 8% per year for the past five years. The first group of master’s degree students in Genetics will start their studies next year.” The department is also regarded as a leader on Clivia research.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
25 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept