Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

Degree in Forensic Science for 2014
2013-08-16

16 August 2013

A BSc degree in Forensic Science will be presented for the first time at the University of the Free State (UFS) from 2014. It is also the first degree of its kind to be presented in South Africa.

According to the Department of Genetics in the Faculty of Natural and Agricultural Sciences the three-year degree is, among others, aimed at people working on crime scenes and on criminal cases in the SA Police Service and in forensic laboratories. At postgraduate level, students can specialise in a variety of forensic fields up to PhD.

A maximum of 80 students will be selected for admission to the course in 2014. Entrance requirements are an admission point of at least 34, as well as a combined minimum point of 17 for Mathematics, Life Sciences and Physical Science. Applications for 2014 close on 30 September 2013. About 700 to 800 new appointments were advertised in this field by the SAPS in the past two years.

The UFS has been offering an honours programme in Forensic Genetics since 2010.

The new course comes at a time when the Government is taking significant steps to eradicate crime in South Africa. At the first conference of the SA Police Service’s National Forensic Service in July 2013, it was reported that milliards of rand are spent to establish an integrated, modernised, well-manned and well-managed criminal justice system. New laboratories are already operational and more laboratories are planned, including one in each province.

The so-called DNA Bill is likely to be approved by Parliament before the end of 2013. Under this bill, all current schedule-1 criminals and suspected criminals will be obliged to provide DNA samples. This information will be stored in a DNA database.

According to the SAPS’ Serial Unit, approximately 1 300 serial killers are currently active in South Africa and the DNA database can be helpful to bring these and other criminals to book. About 80% of all crimes are committed by about 20% of the criminals.

More information on the Forensic Science degree can be found at forensics@ufs.ac.za or +27(0)51 401 9680 or +27(0)51 401 2776.

 

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cellphone: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept