Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

UFS implements paperless meeting system
2004-08-20

 

The Management Committee of the University of the Free State ’s (UFS) Executive Management recently entered the electronic environment of more effective and centralised meeting and decision-making administration by implementing ‘n computerised meeting system.

With this the UFS became the first higher education institution in the world to use the PARNASSUS-meeting management system. PARNASSUS , which refers to a mountain in the Greek mythology, is a licensed system from CIPAL in Belguim – a developer of software for a variety of applications.

“In stead of coming to a weekly management meeting with a file of documentation, each member now walks in with his/her laptop and the whole meeting procedure takes place electronically,” says Prof Sakkie Steyn, Registrar: General at the UFS.

At the same time the secretary registers the minutes point by point on the PARNASSUS programme. At the end of the meeting, after certain technical finishes are done, the minutes are distributed to members of the meeting and their secretaries/office managers. The draft minutes is also distributed to those who must implement decisions and prepare implementation steps. These staff members are given security clearance beforehand.

“The system is unique due to the fact that a translation engine has been built into the agenda and minute system. Agenda items can be submitted in Afrikaans and then automatically be translated in English by means of the interactive translation engine, or vice versa. The same principle applies to the minutes,” says Prof Steyn.

According to Prof Steyn the translation engine was develop with the expert assistance of the UFS’s Unit for Language Facilitation and Empowerment (ULFE). Word strings from previous minutes are now being added to the corpus of the translation engine.

“The system enables the secretary to continuously monitor which points are submitted for the agenda and if these points comply with the set standards namely clear recommendations, background and proposed implementation steps. The agenda is closed at a certain moment and no new points can then be added. The secretary does certain technical finished by means of a final classification of point and annexures. The draft agenda is then sent to the chairperson for approval, after which the agenda is electronically sent to members of the meeting and their secretaries/office managers for preparation,” says Prof Steyn.

“After the minutes have been approved at the next meeting, it is saved on the PARNASSUS decisions data base. The tracing of decisions made during previous meetings can be done by any person with the necessary security clearance. This is different from the past where stacks of documents had to be searched to find a decision,” says Prof Steyn.

According to Prof Steyn the secretariat and meeting administration services at the UFS has now entered a fully virtual and electronic environment. This will enhance effective decision making tremendously. “The PARNASSUS system saves us costs and time and the decentralisation of submissions to meetings lessens the work at centralised points,” says Prof Steyn.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept