Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

NRF commits R30-million for research at the UFS
2007-02-20

The National Research Foundation (NRF) has committed approximately R30-million for various research projects at the University of the Free State (UFS).
 
According to Prof Frans Swanepoel, Director of Research Development at the UFS, the NRF has also approved all eight research niche areas that were submitted to the NRF, the highest number approved at any university in the country.
 
Prof Swanepoel said the 24 research projects for which funding had been obtained from the NRF ranged from traditional healing and HIV/Aids/tuberculosis management, practices of the paediatric anti-retroviral programme at the UFS to nano-materials synthesis and characterisation.
 
He said the eight research niche areas were part of an initiative at the UFS to establish strategic clusters of academic and research excellence.
 
“There will be six strategic academic clusters at the UFS and the eight NRF-approved research niche areas will form part of them,” Prof Swanepoel said.
 
The six strategic clusters are:
1.         Water management in water-scarce areas
2.         New frontiers in poverty reduction and sustainable development
3.         Social transformation in diverse societies
4.         Ecologically sound value chains for agricultural commodities
5.         Materials and nano sciences
6.         Advanced bio-molecular research
 
Prof Swanepoel said that the UFS had also submitted five proposals in terms of an NRF initiative to establish research chairs at South African universities.
 
“Linked to our intention to establish six strategic academic clusters, five proposals for the South African Research Chair Initiative (SARCHi) were submitted. All five pre-proposals were accepted in the first round of screening, and successful candidates have been invited to submit full proposals by the end of February,” he said.
 
The proposed research chairs are:
 
Petro- and organometallic chemistry
Biocatalytic and biomimetic oxidation-reduction systems
Nano-solid state lighting
People’s health and well-being
Water management
 
Speaking at the official opening of the university earlier this month, the Rector and Vice-Chancellor of the UFS, Prof Frederick Fourie, said: “The cluster initiative represents a strategic initiative to focus our energies in a few key areas, investing in them so that the UFS can become an international leader in those fields.”
 
“A medium sized university such as the UFS with relatively limited human, physical and financial resources has to achieve this kind of ‘critical mass’ and synergy to establish itself in terms of its core functions of teaching/learning, research and community engagement,” said Prof Fourie.
 
Media release
Issued by: Lacea Loader
Media Representative
Tel: 051 401 2584
Cell: 083 645 2454
20 February 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept