Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

School of Medicine expands to provide quality tuition
2015-04-20

 

The School of Medicine at the University of the Free State (UFS) has recently extended various training platforms to provide continuous quality tuition to students.

Not only does the school boast a world-class dissection hall but now has plans for additional training facilities at two more hospitals.

The new dissection hall was completed in January 2015 with some final finishing touches that will be done shortly. The hall is newly built as the previous dissection hall has been used for undergraduate anatomy training since 1972.

Dr Sanet van Zyl, Senior Lecturer in the Department of Basic Medical Science, says owing to a prospective growth in the number of medical students as well as changing methods in teaching and learning, the need for a new dissection hall became evident to ensure that students get an optimal learning experience during dissection tuition.

“The new spacious dissection hall is equipped with special lighting and modern equipment for the training programme for second-year medical students. The hall is further equipped with modern sound and computer equipment. A unique camera system will allow students to follow dissection demonstrations on ten screens in the hall. Dissection demonstrations can also be recorded, enabling lecturers to put together new materials for teaching and learning.”

In addition to anatomy teaching for under- and postgraduate medical students, the Department of Basic Medical Science also offers anatomy teaching to under-graduate students from the School of Nursing, the School of Allied Health Professions as well as students from the Natural and Agricultural Sciences (such as students studying Forensic Science). The old dissection hall will still be used for the anatomy training of these students.

“The dissection programme for medical students is of critical importance, not only to acquire anatomical knowledge, but also for the development of critical skills and professionalism of our students. As already mentioned, these modern facilities will enable us to be at the forefront of current development in this field. This will benefit both present and future generations of medical students.”

At the same time, Prof Alan St. Clair Gibson, Head of the School of Medicine, announced that lecturing facilities are being developed at the Kimberley Hospital Complex. There are also plans for study facilities at the UFS’s Qwaqwa Campus and Bongani Hospital in Welkom. The UFS’s planning is also well underway for lecturing and residential facilities for students in Trompsburg, where students will receive training at the Trompsburg Hospital.

“We are very privileged to have these facilities and they will help us to provide world class training for students in the School of Medicine,” Prof St. Clair Gibson says.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept