Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Willem Boshoff
Prof Willem Boshoff shares insights from decades of rust disease research during his inaugural lecture at the University of the Free State.

Rust diseases of food crops remain one of agriculture’s most enduring and evolving challenges. In his inaugural lecture on 23 July 2025 at the University of the Free State (UFS), Prof Willem Boshoff shared how these complex pathogens continue to pose a significant threat to South Africa’s staple crops – and why continued research is more critical than ever.

Titled Battling rust diseases of food crops in South Africa, the lecture reflected on decades of rust research and recent developments in pathogen virulence. Prof Boshoff, from the Department of Plant Sciences, emphasised that the threat posed by rust fungi today stems from their “mechanisms of variability, their ease of long-distance spore dispersal, and subsequent foreign race incursions”.

 

A shifting disease landscape

Rust fungi are biotrophic organisms that cannot be cultured on artificial growth media. This makes rust research a technically demanding field that requires living pathogen collections, seed sources, skilled researchers, and specialised infrastructure. Prof Boshoff noted that for more than 35 years, the UFS has been at the forefront of this work, monitoring rust pathogens on wheat, barley, oats, maize, and sunflower.

While wheat remains the most extensively studied type, recent rust outbreaks across a range of crops point to a worrying trend. A localised outbreak of stem rust on spring wheat in the Western Cape has been linked to race BFGSF, which carries a previously unknown combination of virulence genes affecting both wheat and triticale. In 2021, leaf rust race CNPSK was detected, showing virulence to the highly effective Lr9 resistance gene.

More recently, stripe rust race 142E30A+ – first reported in Zimbabwe – was found in wheat cultivars from the Free State and northern irrigation areas. “Results revealed increased susceptibility of especially spring irrigation wheat cultivars,” Prof Boshoff explained, particularly due to its virulence to the Yr9 and Yr27 resistance genes.

Rust pathogens affecting other crops are also evolving. In maize, only a few lines with mostly stacked resistance gene combinations were effective against all tested isolates. In sunflower, just four of 30 Agricultural Research Council national trial hybrids showed resistance to local rust races.

 

Building better resistance

A key strategy in rust control lies in identifying and understanding resistance in host plants. This, Prof Boshoff stressed, requires optimised phenotyping systems for both greenhouse and field conditions, along with a solid understanding of available resistance sources. At the UFS, several recent studies have contributed valuable data to both local and international plant breeding programmes.

“Continued local and regional rust research is critical,” he said. “It supports early detection of new races, alerts to producers through updated cultivar responses, and enables efficient breeding strategies and other sustainable methods of rust management.”

The rust programme at the UFS has not only supported varietal release and on-farm risk management, but also strengthened collaboration between plant scientists, industry partners, and international researchers. With South Africa’s strategic location and history of rust surveillance, the programme continues to play a pivotal role in continental and global food security efforts.

 

About Prof Willem Boshoff

Prof Willem Boshoff is a plant pathologist with a strong background in wheat breeding and rust disease control. He holds four degrees from the University of the Free State, all awarded cum laude: a BScAgric (1994), BScAgric Honours (1995), MScAgric (1997), and PhDAgric (2001). His doctoral research focused on the control of foliar rusts in wheat.

Between 2001 and 2016, he worked as a wheat breeder and contributed to the release of several commercial cultivars. He joined the UFS Department of Plant Sciences in 2017 and has since been actively involved in national and international research projects, capacity development, and advancing disease resistance in food crops.

News Archive

Kovsie gold medalist defeats Olympic champion
2015-07-07

Wayde van Niekerk and Kirani James
Photo: deuxHD DIRECT

Once again, Kovsie Wayde van Niekerk has made history by defeating the London 2012 Olympic Games champion, Kirani James, of Grenada in the Caribbean. 

On 4 July 2015, he surged 0.79 seconds ahead of Kirani in his  number five lane, becoming the first African to cover 400m in less than 44 seconds. The Kovsie student won the race at 43.96, occupying 10th place on the International Association of Athletics Federations (IAAF) Diamond League all-time list.

Kovsies were still celebrating the gold medalist’s South African record-setting time of 44.24 on 13 June 2015, when he dominated the Diamond League meeting. At the previous race in New York, Van Niekerk improved on his own national record of 44.38. With an impressive dash to the finish line at that particular event, he surpassed Christopher Brown’s 400m record.

In addition to the country’s record, Van Niekerk made his name as one of the continent’s record-breakers. On 7 June 2015, he broke the 1986 African 300m record. Van Niekerk replaced Ivorian Gabriel Tiacoh’s best time of 31.74 with a 31.63 championship win at the Birmingham Diamond League meeting.  Simultaneously, he bettered Morné Nagel’s 2006 South African national record.

Following this outstanding performance, he was positioned in 10th place on the world list in the men’s 300m.

Currently, Van Niekerk is preparing for the 14 July 2015 Diamond League meeting to be held in Lucerne, Switzerland. His last Lucerne race was in 2014 where he clocked 20.19 in the men’s 200m. Based on his recent successes, Van Niekerk seems to have launched himself on a history-making spree, and may well set a new personal best.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept