Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2025 | Story Onthatile Tikoe and the Centre for Teaching and Learning | Photo Supplied
CTL
From the left: Dr Jenny Glennie (SAIDE), Gugu Khanye (Director: Student Success – UFS), Prof Matete Madiba (Deputy Vice-Chancellor – UWC), Prof Francois Strydom (UFS Siyaphumelela Lead), and Prof Nthabiseng Ogude (Siyaphumelela Institutional Coach) at the 2025 Siyaphumelela Conference. The group played a key role in advancing conversations around student success, collaboration, and innovation in higher education.

The University of the Free State (UFS) is advancing a transformative approach to student success that positions it to become a national leader in enhancing social mobility. This vision was underscored at the 2025 Siyaphumelela Conference, where the university shared details of its groundbreaking collaboration with the National Institute for Student Success (NISS) at Georgia State University (GSU) in the United States.

Prof Francois Strydom, Senior Director: Centre for Teaching and Learning (CTL), explained that the initiative builds on lessons from GSU’s remarkable achievements. “The success of Georgia State University has been truly inspiring,” he said. “The NISS approach, which focuses on using data to dismantle systemic barriers and improve graduation rates, has transformed outcomes for a predominantly low-income and diverse student body. By contextualising this data-driven model for our environment, the UFS is proud to be the first university on the African continent to implement it.”

 

Building on proven success

GSU’s success in eliminating equity gaps in retention and completion among different racial groups was achieved through a redesign of its support structures and processes. Drawing on its own established track record of narrowing equity gaps in success rates, the UFS aims to replicate these outcomes in a way that is tailored to its unique context.

At the conference, the UFS Centre for Teaching and Learning (CTL) launched a new national report on student engagement trends and presented papers on a range of topics. These included innovative strategies for improving performance in high-priority modules, the use of predictive analytics to provide proactive student support, and research into gender differences in academic performance and class attendance in a post-COVID world.

Prof Strydom also led an exploratory panel discussion on strengthening collaboration between universities, business, and philanthropy to drive large-scale student success initiatives. “By facilitating a deeper understanding between philanthropic organisations, businesses, and universities, we can develop innovative and impactful approaches to funding and student support,” he said.

 

Driving innovation and sustainability

The UFS’ contributions at the conference were further reinforced by institutional projects focused on the evidence-based integration of artificial intelligence (AI) into student learning and success. These initiatives reflect a clear commitment to transformation that is both research-led and data-driven.

Looking ahead, Prof Strydom emphasised the opportunity before the institution: “We have a unique opportunity to leverage the lessons learnt from our student success initiatives to guide further research, deploy technology in ways that optimise human connection, and help create responsible societal futures while contributing to the sustainability of our university.”

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept