Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2025 | Story Onthatile Tikoe and the Centre for Teaching and Learning | Photo Supplied
CTL
From the left: Dr Jenny Glennie (SAIDE), Gugu Khanye (Director: Student Success – UFS), Prof Matete Madiba (Deputy Vice-Chancellor – UWC), Prof Francois Strydom (UFS Siyaphumelela Lead), and Prof Nthabiseng Ogude (Siyaphumelela Institutional Coach) at the 2025 Siyaphumelela Conference. The group played a key role in advancing conversations around student success, collaboration, and innovation in higher education.

The University of the Free State (UFS) is advancing a transformative approach to student success that positions it to become a national leader in enhancing social mobility. This vision was underscored at the 2025 Siyaphumelela Conference, where the university shared details of its groundbreaking collaboration with the National Institute for Student Success (NISS) at Georgia State University (GSU) in the United States.

Prof Francois Strydom, Senior Director: Centre for Teaching and Learning (CTL), explained that the initiative builds on lessons from GSU’s remarkable achievements. “The success of Georgia State University has been truly inspiring,” he said. “The NISS approach, which focuses on using data to dismantle systemic barriers and improve graduation rates, has transformed outcomes for a predominantly low-income and diverse student body. By contextualising this data-driven model for our environment, the UFS is proud to be the first university on the African continent to implement it.”

 

Building on proven success

GSU’s success in eliminating equity gaps in retention and completion among different racial groups was achieved through a redesign of its support structures and processes. Drawing on its own established track record of narrowing equity gaps in success rates, the UFS aims to replicate these outcomes in a way that is tailored to its unique context.

At the conference, the UFS Centre for Teaching and Learning (CTL) launched a new national report on student engagement trends and presented papers on a range of topics. These included innovative strategies for improving performance in high-priority modules, the use of predictive analytics to provide proactive student support, and research into gender differences in academic performance and class attendance in a post-COVID world.

Prof Strydom also led an exploratory panel discussion on strengthening collaboration between universities, business, and philanthropy to drive large-scale student success initiatives. “By facilitating a deeper understanding between philanthropic organisations, businesses, and universities, we can develop innovative and impactful approaches to funding and student support,” he said.

 

Driving innovation and sustainability

The UFS’ contributions at the conference were further reinforced by institutional projects focused on the evidence-based integration of artificial intelligence (AI) into student learning and success. These initiatives reflect a clear commitment to transformation that is both research-led and data-driven.

Looking ahead, Prof Strydom emphasised the opportunity before the institution: “We have a unique opportunity to leverage the lessons learnt from our student success initiatives to guide further research, deploy technology in ways that optimise human connection, and help create responsible societal futures while contributing to the sustainability of our university.”

News Archive

Plant scientist, Prof Zakkie Pretorius, contributes to food security with his research
2014-08-26

 
Many plant pathologists spend entire careers trying to outwit microbes, in particular those that cause diseases of economically important plants. In some cases control measures are simple and successful. In others, disease management remains an ongoing battle. 

Prof Zakkie Pretorius, Professor in the Department of Plant Sciences, works on a group of wheat diseases known as rusts. The name is derived from the powdery and brown appearance of these fungi.

Over the course of history wheat rusts have undergone what are notoriously known as boom and bust cycles. During boom periods the disease is controlled by means of heritable resistance in a variety, resulting in good yields. This resistance, though, is more often than not busted by the appearance of new rust strains with novel parasitic abilities. For resistance to remain durable, complex combinations of effective genes and chromosome regions have to be added in a single wheat variety.

In recent years, Prof Pretorius has focused on identifying and characterising resistance sources that have the potential to endure the onslaught of new rust races. His group has made great progress in the control of stripe rust – where several chromosome regions conditioning effective resistance have been identified.

Dr Renée Prins of CenGen and an affiliated UFS staff member, developed molecular markers for these resistance sources. These are now routinely applied in wheat breeding programmes in South Africa. In addition, Prof Pretorius collaborates with several countries to transfer newly discovered stem rust resistance genes to wheat, and in characterising effective sources of resistance in existing wheat collections.

His work is closely supported by research conducted by UFS colleagues, students and other partners on the genetics of the various wheat rust pathogens. These studies aim to answer questions about:
• the origin and relatedness of rust races,
• their highly successful parasitic ability, and
• their adaptation in different environments.

The UFS wheat rust programme adds significantly to the development of resistant varieties and thus more sustainable production of this important crop. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept