Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2025 | Story Martinette Brits
Dr Tlou Raphela-Masuku
Dr Tlou Raphela-Masuku, Senior Lecturer in the UFS Disaster Management Training and Education Centre for Africa (DiMTEC), was selected as one of 15 early-career researchers from Southern and Eastern Africa to join the British Academy-funded International Writing Workshop on Climate Change Adaptation.

Dr Tlou Raphela-Masuku, Senior Lecturer in the University of the Free State (UFS) Disaster Management Training and Education Centre for Africa (DiMTEC), has been selected as one of only 15 early-career researchers from Southern and Eastern Africa to participate in the prestigious British Academy-funded International Writing Workshop on Climate Change Adaptation.

Her selection follows a highly competitive process involving applicants from across the region, underscoring her growing influence in climate research. “Being selected as one of only 15 early-career researchers from the SADC and East Africa region was truly humbling. It affirmed the value of my research and passion for climate adaptation and further motivated me to keep making a meaningful contribution in this field,” she said.

 

Strengthening research visibility and collaboration

The workshop is jointly organised by York St John University (UK), the University of the West of England (UK), the University of Nairobi (Kenya), and the University of Cape Town (South Africa). It brings together emerging scholars from a range of disciplinary backgrounds to foster interdisciplinary collaboration, strengthen academic writing and publishing skills, and develop grant proposal expertise.

For Dr Raphela-Masuku, the programme is a natural fit with her work at DiMTEC. “At DiMTEC, my work spans ecosystem-based disaster risk reduction and climate change adaptation. I am the core teacher for this module for master’s students. My recent and upcoming research, including work on flood risks and climate vulnerability among subsistence farmers, directly aligns with the themes of the workshop,” she explained.

Her focus within the programme will be on climate-induced vulnerabilities and resilience, particularly in rural and peri-urban communities, with a strong emphasis on extreme weather events and nature-based solutions. She looks forward to both the online and in-person engagements in Nairobi and Cape Town, which will run between 2025 and 2027. “These offer a fantastic opportunity for peer learning, mentorship, and deeper engagement with fellow climate researchers. Exchanging ideas face to face is always energising and often leads to lasting collaborations,” she said.

 

Advancing DiMTEC’s mission

Participation in the workshop will not only advance Dr Raphela-Masuku’s own academic profile but also strengthen DiMTEC’s regional and continental footprint. “My participation directly supports DiMTEC’s mission to build climate resilience and disaster preparedness across Africa. It strengthens our footprint in the region and facilitates collaboration with other institutions working on similar challenges, especially in rural vulnerability and adaptation,” she noted.

She sees the experience as a vital platform to amplify her work on flood resilience and the health impacts of climate change to audiences that include academics, policymakers, and practitioners. “The workshop will enhance the visibility of my work and provide the tools and strategies to navigate high-impact publishing, which is crucial for emerging African scholars,” she added.

Reflecting on her journey, Dr Raphela-Masuku said it has been “rooted in both academic enquiry and real-world impact”, driven by the urgent need to support vulnerable communities. Her advice to aspiring researchers is clear: “Stay curious. Stay rooted in the needs of your communities. And don’t be afraid to ask hard questions or chase ambitious goals. Climate adaptation research is not just about publishing papers – it’s about finding real solutions for real people.”

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept