Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2025 | Story Martinette Brits
Dr Tlou Raphela-Masuku
Dr Tlou Raphela-Masuku, Senior Lecturer in the UFS Disaster Management Training and Education Centre for Africa (DiMTEC), was selected as one of 15 early-career researchers from Southern and Eastern Africa to join the British Academy-funded International Writing Workshop on Climate Change Adaptation.

Dr Tlou Raphela-Masuku, Senior Lecturer in the University of the Free State (UFS) Disaster Management Training and Education Centre for Africa (DiMTEC), has been selected as one of only 15 early-career researchers from Southern and Eastern Africa to participate in the prestigious British Academy-funded International Writing Workshop on Climate Change Adaptation.

Her selection follows a highly competitive process involving applicants from across the region, underscoring her growing influence in climate research. “Being selected as one of only 15 early-career researchers from the SADC and East Africa region was truly humbling. It affirmed the value of my research and passion for climate adaptation and further motivated me to keep making a meaningful contribution in this field,” she said.

 

Strengthening research visibility and collaboration

The workshop is jointly organised by York St John University (UK), the University of the West of England (UK), the University of Nairobi (Kenya), and the University of Cape Town (South Africa). It brings together emerging scholars from a range of disciplinary backgrounds to foster interdisciplinary collaboration, strengthen academic writing and publishing skills, and develop grant proposal expertise.

For Dr Raphela-Masuku, the programme is a natural fit with her work at DiMTEC. “At DiMTEC, my work spans ecosystem-based disaster risk reduction and climate change adaptation. I am the core teacher for this module for master’s students. My recent and upcoming research, including work on flood risks and climate vulnerability among subsistence farmers, directly aligns with the themes of the workshop,” she explained.

Her focus within the programme will be on climate-induced vulnerabilities and resilience, particularly in rural and peri-urban communities, with a strong emphasis on extreme weather events and nature-based solutions. She looks forward to both the online and in-person engagements in Nairobi and Cape Town, which will run between 2025 and 2027. “These offer a fantastic opportunity for peer learning, mentorship, and deeper engagement with fellow climate researchers. Exchanging ideas face to face is always energising and often leads to lasting collaborations,” she said.

 

Advancing DiMTEC’s mission

Participation in the workshop will not only advance Dr Raphela-Masuku’s own academic profile but also strengthen DiMTEC’s regional and continental footprint. “My participation directly supports DiMTEC’s mission to build climate resilience and disaster preparedness across Africa. It strengthens our footprint in the region and facilitates collaboration with other institutions working on similar challenges, especially in rural vulnerability and adaptation,” she noted.

She sees the experience as a vital platform to amplify her work on flood resilience and the health impacts of climate change to audiences that include academics, policymakers, and practitioners. “The workshop will enhance the visibility of my work and provide the tools and strategies to navigate high-impact publishing, which is crucial for emerging African scholars,” she added.

Reflecting on her journey, Dr Raphela-Masuku said it has been “rooted in both academic enquiry and real-world impact”, driven by the urgent need to support vulnerable communities. Her advice to aspiring researchers is clear: “Stay curious. Stay rooted in the needs of your communities. And don’t be afraid to ask hard questions or chase ambitious goals. Climate adaptation research is not just about publishing papers – it’s about finding real solutions for real people.”

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept