Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2025 | Story Martinette Brits
Dr Tlou Raphela-Masuku
Dr Tlou Raphela-Masuku, Senior Lecturer in the UFS Disaster Management Training and Education Centre for Africa (DiMTEC), was selected as one of 15 early-career researchers from Southern and Eastern Africa to join the British Academy-funded International Writing Workshop on Climate Change Adaptation.

Dr Tlou Raphela-Masuku, Senior Lecturer in the University of the Free State (UFS) Disaster Management Training and Education Centre for Africa (DiMTEC), has been selected as one of only 15 early-career researchers from Southern and Eastern Africa to participate in the prestigious British Academy-funded International Writing Workshop on Climate Change Adaptation.

Her selection follows a highly competitive process involving applicants from across the region, underscoring her growing influence in climate research. “Being selected as one of only 15 early-career researchers from the SADC and East Africa region was truly humbling. It affirmed the value of my research and passion for climate adaptation and further motivated me to keep making a meaningful contribution in this field,” she said.

 

Strengthening research visibility and collaboration

The workshop is jointly organised by York St John University (UK), the University of the West of England (UK), the University of Nairobi (Kenya), and the University of Cape Town (South Africa). It brings together emerging scholars from a range of disciplinary backgrounds to foster interdisciplinary collaboration, strengthen academic writing and publishing skills, and develop grant proposal expertise.

For Dr Raphela-Masuku, the programme is a natural fit with her work at DiMTEC. “At DiMTEC, my work spans ecosystem-based disaster risk reduction and climate change adaptation. I am the core teacher for this module for master’s students. My recent and upcoming research, including work on flood risks and climate vulnerability among subsistence farmers, directly aligns with the themes of the workshop,” she explained.

Her focus within the programme will be on climate-induced vulnerabilities and resilience, particularly in rural and peri-urban communities, with a strong emphasis on extreme weather events and nature-based solutions. She looks forward to both the online and in-person engagements in Nairobi and Cape Town, which will run between 2025 and 2027. “These offer a fantastic opportunity for peer learning, mentorship, and deeper engagement with fellow climate researchers. Exchanging ideas face to face is always energising and often leads to lasting collaborations,” she said.

 

Advancing DiMTEC’s mission

Participation in the workshop will not only advance Dr Raphela-Masuku’s own academic profile but also strengthen DiMTEC’s regional and continental footprint. “My participation directly supports DiMTEC’s mission to build climate resilience and disaster preparedness across Africa. It strengthens our footprint in the region and facilitates collaboration with other institutions working on similar challenges, especially in rural vulnerability and adaptation,” she noted.

She sees the experience as a vital platform to amplify her work on flood resilience and the health impacts of climate change to audiences that include academics, policymakers, and practitioners. “The workshop will enhance the visibility of my work and provide the tools and strategies to navigate high-impact publishing, which is crucial for emerging African scholars,” she added.

Reflecting on her journey, Dr Raphela-Masuku said it has been “rooted in both academic enquiry and real-world impact”, driven by the urgent need to support vulnerable communities. Her advice to aspiring researchers is clear: “Stay curious. Stay rooted in the needs of your communities. And don’t be afraid to ask hard questions or chase ambitious goals. Climate adaptation research is not just about publishing papers – it’s about finding real solutions for real people.”

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept