Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2025 | Story Martinette Brits
Dr Tlou Raphela-Masuku
Dr Tlou Raphela-Masuku, Senior Lecturer in the UFS Disaster Management Training and Education Centre for Africa (DiMTEC), was selected as one of 15 early-career researchers from Southern and Eastern Africa to join the British Academy-funded International Writing Workshop on Climate Change Adaptation.

Dr Tlou Raphela-Masuku, Senior Lecturer in the University of the Free State (UFS) Disaster Management Training and Education Centre for Africa (DiMTEC), has been selected as one of only 15 early-career researchers from Southern and Eastern Africa to participate in the prestigious British Academy-funded International Writing Workshop on Climate Change Adaptation.

Her selection follows a highly competitive process involving applicants from across the region, underscoring her growing influence in climate research. “Being selected as one of only 15 early-career researchers from the SADC and East Africa region was truly humbling. It affirmed the value of my research and passion for climate adaptation and further motivated me to keep making a meaningful contribution in this field,” she said.

 

Strengthening research visibility and collaboration

The workshop is jointly organised by York St John University (UK), the University of the West of England (UK), the University of Nairobi (Kenya), and the University of Cape Town (South Africa). It brings together emerging scholars from a range of disciplinary backgrounds to foster interdisciplinary collaboration, strengthen academic writing and publishing skills, and develop grant proposal expertise.

For Dr Raphela-Masuku, the programme is a natural fit with her work at DiMTEC. “At DiMTEC, my work spans ecosystem-based disaster risk reduction and climate change adaptation. I am the core teacher for this module for master’s students. My recent and upcoming research, including work on flood risks and climate vulnerability among subsistence farmers, directly aligns with the themes of the workshop,” she explained.

Her focus within the programme will be on climate-induced vulnerabilities and resilience, particularly in rural and peri-urban communities, with a strong emphasis on extreme weather events and nature-based solutions. She looks forward to both the online and in-person engagements in Nairobi and Cape Town, which will run between 2025 and 2027. “These offer a fantastic opportunity for peer learning, mentorship, and deeper engagement with fellow climate researchers. Exchanging ideas face to face is always energising and often leads to lasting collaborations,” she said.

 

Advancing DiMTEC’s mission

Participation in the workshop will not only advance Dr Raphela-Masuku’s own academic profile but also strengthen DiMTEC’s regional and continental footprint. “My participation directly supports DiMTEC’s mission to build climate resilience and disaster preparedness across Africa. It strengthens our footprint in the region and facilitates collaboration with other institutions working on similar challenges, especially in rural vulnerability and adaptation,” she noted.

She sees the experience as a vital platform to amplify her work on flood resilience and the health impacts of climate change to audiences that include academics, policymakers, and practitioners. “The workshop will enhance the visibility of my work and provide the tools and strategies to navigate high-impact publishing, which is crucial for emerging African scholars,” she added.

Reflecting on her journey, Dr Raphela-Masuku said it has been “rooted in both academic enquiry and real-world impact”, driven by the urgent need to support vulnerable communities. Her advice to aspiring researchers is clear: “Stay curious. Stay rooted in the needs of your communities. And don’t be afraid to ask hard questions or chase ambitious goals. Climate adaptation research is not just about publishing papers – it’s about finding real solutions for real people.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept