Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2025 | Story Martinette Brits | Photo Barend Nagel
MASSTER Project
The University of the Free State (UFS) recently welcomed distinguished international partners for the MASSTER project.

The University of the Free State (UFS) recently hosted a group of distinguished international partners as part of the MASSTER project (Managing (South) Africa and Senegal Sustainability Targets through Economic-diversification of Rural-areas). Funded by the European Union Erasmus programme (Project ID 101129023), the project aims to support the agricultural sector in Sub-Saharan Africa (SSA) and Senegal by addressing pressing issues such as rural migration, food security, and sustainable development. 

 

What is the MASSTER Project? 

Launched in early 2024, the MASSTER project is an ambitious initiative designed to enhance agricultural development and economic diversification in rural areas across SSA, with a particular focus on Senegal and South Africa. According to Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at UFS, who serves as the project’s coordinator, researcher and trainer, MASSTER  seeks to make a lasting impact on the sector. 

“Agriculture plays a vital role in these regions, contributing up to 40% of GDP and providing livelihoods for over 70% of the population. However, challenges such as rural-urban migration and underutilised agricultural potential hinder the growth of this crucial sector,” explains Prof Witthuhn. 

By offering innovative training and educational tools to farmers and agricultural students, the project aims to bridge these gaps.  It involves higher education institutions (HEIs) in community development and focuses on the intersection of agriculture and migration. In doing so, MASSTER contributes to key Sustainable Development Goals (SDGs), including zero hunger, quality education, decent work, and economic growth.


Key objectives of the MASSTER Project

MASSTER collaborates with six partner HEIs in Senegal and South Africa to tackle pressing agricultural and migration challenges. The project focuses on: 

  • Assisting local farmers in implementing income-generating activities.
  • Supporting extension services in delivering relevant training programmes that emphasise economic sustainability.
  • Helping municipalities manage economic migration, particularly from rural areas.

To achieve these objectives, MASSTER analyses the risk factors that drive migration and those that prevent it, designing training programmes that empower current and future farmers to generate income. It also provides Training of Trainers (TOT) to HEIs and extension services, equipping them with skills to deliver impactful training sessions. Additionally, the project helps HEIs develop comprehensive migration management strategies that foster a whole-of-society approach linking agriculture and migration policies. 


A global collaborative effort

The MASSTER project brings together a diverse consortium of partners from Senegal, South Africa and Europe, including: 

  • Senegal: Université Du Sine Saloum El-Hâdj Ibrahima Niass Kaolack (USSEIN), Université Gaston Berger Saint- Louis (UGB), Université Assane Seck de Ziguinchor (UASZ), Interprofessional Center for Training in Agriculture (CIFA)
  • South Africa: University of the Free State (UFS), Stellenbosch University (SU), Tshwane University of Technology (TUT), South African Society for Agricultural Extension (SASAE)
  • Germany: Hochschule Weihenstephan-Triesdorf (HSWT)
  • France: Universite D’Aix-Marseille (AMU)
  • Italy: University of Naples Federico II (UNINA)
  • Serbia: Academy of Professional Studies South Serbia and Western Balkans Institute

Benefits for the University of the Free State

The MASSTER project presents significant opportunities for the UFS. It enables researchers to collaborate with international partners on groundbreaking research that addresses urgent agricultural challenges. Prof Witthuhn highlights that the project also provides valuable third-stream funding for the UFS research initiatives, strengthening the university’s broader academic and community development efforts. 

Additionally, UFS researchers gain hands-on experience in European Union grant administration, potentially paving the way for future EU-funded projects. The project fosters direct engagement with local farming communities by offering training that empowers farmers and promotes rural development. Moreover, it enhances the university’s expertise in agricultural sustainability and migration management.


Partners’ visit to UFS

The recent visit by MASSTER project partners to the UFS marked a key milestone in this collaboration. During their stay, the group participated in various activities, including farm visits and discussions aimed at advancing the project’s objectives.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept