Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2025 | Story Martinette Brits | Photo Barend Nagel
MASSTER Project
The University of the Free State (UFS) recently welcomed distinguished international partners for the MASSTER project.

The University of the Free State (UFS) recently hosted a group of distinguished international partners as part of the MASSTER project (Managing (South) Africa and Senegal Sustainability Targets through Economic-diversification of Rural-areas). Funded by the European Union Erasmus programme (Project ID 101129023), the project aims to support the agricultural sector in Sub-Saharan Africa (SSA) and Senegal by addressing pressing issues such as rural migration, food security, and sustainable development. 

 

What is the MASSTER Project? 

Launched in early 2024, the MASSTER project is an ambitious initiative designed to enhance agricultural development and economic diversification in rural areas across SSA, with a particular focus on Senegal and South Africa. According to Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at UFS, who serves as the project’s coordinator, researcher and trainer, MASSTER  seeks to make a lasting impact on the sector. 

“Agriculture plays a vital role in these regions, contributing up to 40% of GDP and providing livelihoods for over 70% of the population. However, challenges such as rural-urban migration and underutilised agricultural potential hinder the growth of this crucial sector,” explains Prof Witthuhn. 

By offering innovative training and educational tools to farmers and agricultural students, the project aims to bridge these gaps.  It involves higher education institutions (HEIs) in community development and focuses on the intersection of agriculture and migration. In doing so, MASSTER contributes to key Sustainable Development Goals (SDGs), including zero hunger, quality education, decent work, and economic growth.


Key objectives of the MASSTER Project

MASSTER collaborates with six partner HEIs in Senegal and South Africa to tackle pressing agricultural and migration challenges. The project focuses on: 

  • Assisting local farmers in implementing income-generating activities.
  • Supporting extension services in delivering relevant training programmes that emphasise economic sustainability.
  • Helping municipalities manage economic migration, particularly from rural areas.

To achieve these objectives, MASSTER analyses the risk factors that drive migration and those that prevent it, designing training programmes that empower current and future farmers to generate income. It also provides Training of Trainers (TOT) to HEIs and extension services, equipping them with skills to deliver impactful training sessions. Additionally, the project helps HEIs develop comprehensive migration management strategies that foster a whole-of-society approach linking agriculture and migration policies. 


A global collaborative effort

The MASSTER project brings together a diverse consortium of partners from Senegal, South Africa and Europe, including: 

  • Senegal: Université Du Sine Saloum El-Hâdj Ibrahima Niass Kaolack (USSEIN), Université Gaston Berger Saint- Louis (UGB), Université Assane Seck de Ziguinchor (UASZ), Interprofessional Center for Training in Agriculture (CIFA)
  • South Africa: University of the Free State (UFS), Stellenbosch University (SU), Tshwane University of Technology (TUT), South African Society for Agricultural Extension (SASAE)
  • Germany: Hochschule Weihenstephan-Triesdorf (HSWT)
  • France: Universite D’Aix-Marseille (AMU)
  • Italy: University of Naples Federico II (UNINA)
  • Serbia: Academy of Professional Studies South Serbia and Western Balkans Institute

Benefits for the University of the Free State

The MASSTER project presents significant opportunities for the UFS. It enables researchers to collaborate with international partners on groundbreaking research that addresses urgent agricultural challenges. Prof Witthuhn highlights that the project also provides valuable third-stream funding for the UFS research initiatives, strengthening the university’s broader academic and community development efforts. 

Additionally, UFS researchers gain hands-on experience in European Union grant administration, potentially paving the way for future EU-funded projects. The project fosters direct engagement with local farming communities by offering training that empowers farmers and promotes rural development. Moreover, it enhances the university’s expertise in agricultural sustainability and migration management.


Partners’ visit to UFS

The recent visit by MASSTER project partners to the UFS marked a key milestone in this collaboration. During their stay, the group participated in various activities, including farm visits and discussions aimed at advancing the project’s objectives.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept