Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2025 | Story Martinette Brits | Photo Barend Nagel
MASSTER Project
The University of the Free State (UFS) recently welcomed distinguished international partners for the MASSTER project.

The University of the Free State (UFS) recently hosted a group of distinguished international partners as part of the MASSTER project (Managing (South) Africa and Senegal Sustainability Targets through Economic-diversification of Rural-areas). Funded by the European Union Erasmus programme (Project ID 101129023), the project aims to support the agricultural sector in Sub-Saharan Africa (SSA) and Senegal by addressing pressing issues such as rural migration, food security, and sustainable development. 

 

What is the MASSTER Project? 

Launched in early 2024, the MASSTER project is an ambitious initiative designed to enhance agricultural development and economic diversification in rural areas across SSA, with a particular focus on Senegal and South Africa. According to Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at UFS, who serves as the project’s coordinator, researcher and trainer, MASSTER  seeks to make a lasting impact on the sector. 

“Agriculture plays a vital role in these regions, contributing up to 40% of GDP and providing livelihoods for over 70% of the population. However, challenges such as rural-urban migration and underutilised agricultural potential hinder the growth of this crucial sector,” explains Prof Witthuhn. 

By offering innovative training and educational tools to farmers and agricultural students, the project aims to bridge these gaps.  It involves higher education institutions (HEIs) in community development and focuses on the intersection of agriculture and migration. In doing so, MASSTER contributes to key Sustainable Development Goals (SDGs), including zero hunger, quality education, decent work, and economic growth.


Key objectives of the MASSTER Project

MASSTER collaborates with six partner HEIs in Senegal and South Africa to tackle pressing agricultural and migration challenges. The project focuses on: 

  • Assisting local farmers in implementing income-generating activities.
  • Supporting extension services in delivering relevant training programmes that emphasise economic sustainability.
  • Helping municipalities manage economic migration, particularly from rural areas.

To achieve these objectives, MASSTER analyses the risk factors that drive migration and those that prevent it, designing training programmes that empower current and future farmers to generate income. It also provides Training of Trainers (TOT) to HEIs and extension services, equipping them with skills to deliver impactful training sessions. Additionally, the project helps HEIs develop comprehensive migration management strategies that foster a whole-of-society approach linking agriculture and migration policies. 


A global collaborative effort

The MASSTER project brings together a diverse consortium of partners from Senegal, South Africa and Europe, including: 

  • Senegal: Université Du Sine Saloum El-Hâdj Ibrahima Niass Kaolack (USSEIN), Université Gaston Berger Saint- Louis (UGB), Université Assane Seck de Ziguinchor (UASZ), Interprofessional Center for Training in Agriculture (CIFA)
  • South Africa: University of the Free State (UFS), Stellenbosch University (SU), Tshwane University of Technology (TUT), South African Society for Agricultural Extension (SASAE)
  • Germany: Hochschule Weihenstephan-Triesdorf (HSWT)
  • France: Universite D’Aix-Marseille (AMU)
  • Italy: University of Naples Federico II (UNINA)
  • Serbia: Academy of Professional Studies South Serbia and Western Balkans Institute

Benefits for the University of the Free State

The MASSTER project presents significant opportunities for the UFS. It enables researchers to collaborate with international partners on groundbreaking research that addresses urgent agricultural challenges. Prof Witthuhn highlights that the project also provides valuable third-stream funding for the UFS research initiatives, strengthening the university’s broader academic and community development efforts. 

Additionally, UFS researchers gain hands-on experience in European Union grant administration, potentially paving the way for future EU-funded projects. The project fosters direct engagement with local farming communities by offering training that empowers farmers and promotes rural development. Moreover, it enhances the university’s expertise in agricultural sustainability and migration management.


Partners’ visit to UFS

The recent visit by MASSTER project partners to the UFS marked a key milestone in this collaboration. During their stay, the group participated in various activities, including farm visits and discussions aimed at advancing the project’s objectives.

News Archive

Mushrooms, from gourmet food for humans to fodder for animals
2016-12-19

Description: Mushroom research photo 2 Tags: Mushroom research photo 2 

From the UFS Department of Microbial Biochemical and
Food Biotechnology are, from left: Prof Bennie Viljoen,
researcher,
MSc student Christie van der Berg,
and PhD student Christopher Rothman
Photo: Anja Aucamp

Mushrooms have so many medicinal applications that humans have a substance in hand to promote long healthy lives. And it is not only humans who benefit from these macrofungi growing mostly in dark spaces.

“The substrate applied for growing the mushrooms can be used as animal fodder. Keeping all the medicinal values intact, these are transferred to feed goats as a supplement to their daily diet,” said Prof Bennie Viljoen, researcher in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

Curiosity and a humble start
“The entire mushroom project started two years ago as a sideline of curiosity to grow edible gourmet mushrooms for my own consumption. I was also intrigued by a friend who ate these mushrooms in their dried form to support his immune system, claiming he never gets sick. The sideline quickly changed when we discovered the interesting world of mushrooms and postgraduate students became involved.

“Since these humble beginnings we have rapidly expanded with the financial help of the Technology Transfer Office to a small enterprise with zero waste,” said Prof Viljoen. The research group also has many collaborators in the industry with full support from a nutraceutical company, an animal feed company and a mushroom growers’ association.

Prof Viljoen and his team’s mushroom research has various aspects.

Growing the tastiest edible mushrooms possible
“We are growing gourmet mushrooms on agricultural waste under controlled environmental conditions to achieve the tastiest edible mushrooms possible. This group of mushrooms is comprised of the King, Pink, Golden, Grey, Blue and Brown Oysters. Other than the research results we have obtained, this part is mainly governed by the postgraduate students running it as a business with the intention to share in the profit from excess mushrooms because they lack research bursaries. The mushrooms are sold to restaurants and food markets at weekends,” said Prof Viljoen.

Description: Mushroom research photo 1 Tags: Mushroom research photo 1 

Photo: Anja Aucamp

Natural alternative for the treatment of various ailments
“The second entity of research encompasses the growth and application of medicinal mushrooms. Throughout history, mushrooms have been used as a natural alternative for the treatment of various ailments. Nowadays, macrofungi are known to be a source of bioactive compounds of medicinal value. These include prevention or alleviation of heart disease, inhibition of platelet aggregation, reduction of blood glucose levels, reduction of blood cholesterol and the prevention or alleviation of infections caused by bacterial, viral, fungal and parasitic pathogens. All of these properties can be enjoyed by capsulation of liquid concentrates or dried powdered mushrooms, as we recently confirmed by trial efforts which are defined as mushroom nutriceuticals,” he said.

Their research focuses on six different medicinal genera, each with specific medicinal attributes:
1.    Maitake: the most dominant property exhibited by this specific mushroom is the reduction of blood pressure as well as cholesterol. Other medicinal properties include anticancer, antidiabetic and immunomodulating while it may also improve the health of HIV patients.
2.    The Turkey Tail mushroom is known for its activity against various tumours and viruses as well as its antioxidant properties.
3.    Shiitake mushrooms have antioxidant properties and are capable of lowering blood serum cholesterol (BSC). The mushroom produces a water-soluble polysaccharide, lentinan, considered to be responsible for anticancer, antimicrobial and antitumour properties.
4.    The Grey Oyster mushroom has medicinal properties such as anticholesterol, antidiabetic, antimicrobial, antioxidant, antitumour and immunomodulatory properties.
5.    Recently there has been an increased interest in the Lion’s Mane mushroom which contains nerve growth factors (NGF) and may be applied as a possible treatment of Alzheimer’s disease as this compound seems to have the ability to re-grow and rebuild myelin by stimulating neurons.
6.    Reishi mushrooms are considered to be the mushrooms with the most medicinal properties due to their enhancing health effects such as treatment of cancer, as well as increasing longevity, resistance and recovery from diseases.


Description: Mushroom research photo 3 Tags: Mushroom research photo 3


Valuable entity for the agricultural sector
Another research focus is the bio-mushroom application phenome, to break down trees growing as encroaching plants. This research is potentially very valuable for the agricultural sector in the areas where Acacia is an encroaching problem. With this process, waste products are upgraded to a usable state. “It is therefore, possible to convert woody biomass with a low digestibility and limited availability of nutrients into high-quality animal fodder. By carefully selecting the right combination of fungus species to ferment agro-wastes, a whole host of advantages could become inherently part of the substrate. Mushrooms could become a biotechnological tool used to ‘inject’ the substrate that will be fed to animals with nutrition and/or medicine as the need and situation dictates,” said Prof Viljoen.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept