Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 July 2025 | Story Nontobeko Nxumalo | Photo Supplied
Mandela Day
The DiMTEC team marked Mandela Day by planting indigenous trees on campus, promoting sustainability and community resilience through nature-based solutions.

The University of the Free State’s (UFS) Centre for Disaster Management Training and Education Centre (DiMTEC) commemorated Nelson Mandela International Day on 18 July by planting trees that help embed nature-based solutions at the heart of disaster risk reduction and climate change adaptation.

“It’s a simple act, yet deeply symbolic – a commitment to sustainability, climate resilience, and future generations,” said Dr Tlou Raphela-Masuku, a Senior Lecturer at DiMTEC. “Nature-based solutions, such as planting indigenous trees, are not just theoretical strategies; they are practical tools to reduce disaster risk, restore ecosystems, and build community resilience.” 

One of the trees planted, the indigenous, resilient Wild Olive (Olea europaea subsp. africana), known locally as Mohlware, embodies the drive to place nature-based solutions at the forefront of disaster risk reduction. “This tree is drought-tolerant and well-adapted to Bloemfontein’s semi-arid climate,” Dr Raphela-Masuku explained. “It stabilises soil, prevents erosion, supports biodiversity, and cools urban spaces. Its thick canopy shelters birds and small mammals, while its deep roots nourish and protect the earth. In a warming world, every Wild Olive planted is a small act of resistance against climate change.” 

 

Collaborative programme

Dr Raphela-Masuku said the tree-planting programme, a collaboration with UFS Protection Services and University Estates, ties directly into the principles the centre teaches in its Master's of Disaster Management module Ecosystem-Based Disaster Risk Reduction (ECO-DRR). 

“From the viewpoint of the African Union’s Science and Technology Advisory Group, it is befitting that as part of the work dedicated to disaster risk reduction initiatives in the African continent, this day is a reminder that we promote community service, resilience and social justice in the ‘Africa we want’. Furthermore, Mandela Day activities align with the Sendai Framework for Disaster Risk Reduction (SFDRR)’s priorities of understanding risks and strengthening disaster governance at all levels,” remarked Prof Alice Ncube, an Associate Professor at DiMTEC.

She added that, “In a city like Bloemfontein, which is not exempt from drought accelerating frequently and temperatures rising yearly, choosing to plant climate-resilient, indigenous species isn’t merely wise, it’s necessary. Trees like the Wild Olive don’t just provide shade and beauty; they help cool urban environments, support biodiversity, and protect our university community from floods and storms. They represent a forward-thinking investment in a sustainable, climate-adapted future. Mandela Day reminds us that service should be continuous, not confined to a single day. A tree planted today will outlive us, offering shade, shelter, and hope to those who come after. As Mandela himself said, ‘The true meaning of life is to plant trees under whose shade you do not expect to sit.’”

 

Commitment to change

Mandela Day also fits in with the UFS’ Vision 130 strategic intent. It is a day that reminds us that everyone has the power to make a difference. In the spirit of Madiba’s legacy, we can commit to fostering social justice, human dignity, and sustainable development through academic excellence and meaningful community engagement. In the face of climate change, biodiversity loss, and environmental degradation, each seed we plant becomes an act of defiance as well as an act of hope.

Prof Samuel Adelabu, Vice-Dean: Postgraduate and Research in the Faculty of Natural and Agricultural Sciences, applauded the team’s efforts. “We are planting trees that represent sustainability, things that can stay for long. I believe we are all practising sustainability in this initiative we are doing today to show that the university, as well as the faculties, are in line with sustainability.” 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept