Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 July 2025 | Story Nontobeko Nxumalo | Photo Supplied
Mandela Day
The DiMTEC team marked Mandela Day by planting indigenous trees on campus, promoting sustainability and community resilience through nature-based solutions.

The University of the Free State’s (UFS) Centre for Disaster Management Training and Education Centre (DiMTEC) commemorated Nelson Mandela International Day on 18 July by planting trees that help embed nature-based solutions at the heart of disaster risk reduction and climate change adaptation.

“It’s a simple act, yet deeply symbolic – a commitment to sustainability, climate resilience, and future generations,” said Dr Tlou Raphela-Masuku, a Senior Lecturer at DiMTEC. “Nature-based solutions, such as planting indigenous trees, are not just theoretical strategies; they are practical tools to reduce disaster risk, restore ecosystems, and build community resilience.” 

One of the trees planted, the indigenous, resilient Wild Olive (Olea europaea subsp. africana), known locally as Mohlware, embodies the drive to place nature-based solutions at the forefront of disaster risk reduction. “This tree is drought-tolerant and well-adapted to Bloemfontein’s semi-arid climate,” Dr Raphela-Masuku explained. “It stabilises soil, prevents erosion, supports biodiversity, and cools urban spaces. Its thick canopy shelters birds and small mammals, while its deep roots nourish and protect the earth. In a warming world, every Wild Olive planted is a small act of resistance against climate change.” 

 

Collaborative programme

Dr Raphela-Masuku said the tree-planting programme, a collaboration with UFS Protection Services and University Estates, ties directly into the principles the centre teaches in its Master's of Disaster Management module Ecosystem-Based Disaster Risk Reduction (ECO-DRR). 

“From the viewpoint of the African Union’s Science and Technology Advisory Group, it is befitting that as part of the work dedicated to disaster risk reduction initiatives in the African continent, this day is a reminder that we promote community service, resilience and social justice in the ‘Africa we want’. Furthermore, Mandela Day activities align with the Sendai Framework for Disaster Risk Reduction (SFDRR)’s priorities of understanding risks and strengthening disaster governance at all levels,” remarked Prof Alice Ncube, an Associate Professor at DiMTEC.

She added that, “In a city like Bloemfontein, which is not exempt from drought accelerating frequently and temperatures rising yearly, choosing to plant climate-resilient, indigenous species isn’t merely wise, it’s necessary. Trees like the Wild Olive don’t just provide shade and beauty; they help cool urban environments, support biodiversity, and protect our university community from floods and storms. They represent a forward-thinking investment in a sustainable, climate-adapted future. Mandela Day reminds us that service should be continuous, not confined to a single day. A tree planted today will outlive us, offering shade, shelter, and hope to those who come after. As Mandela himself said, ‘The true meaning of life is to plant trees under whose shade you do not expect to sit.’”

 

Commitment to change

Mandela Day also fits in with the UFS’ Vision 130 strategic intent. It is a day that reminds us that everyone has the power to make a difference. In the spirit of Madiba’s legacy, we can commit to fostering social justice, human dignity, and sustainable development through academic excellence and meaningful community engagement. In the face of climate change, biodiversity loss, and environmental degradation, each seed we plant becomes an act of defiance as well as an act of hope.

Prof Samuel Adelabu, Vice-Dean: Postgraduate and Research in the Faculty of Natural and Agricultural Sciences, applauded the team’s efforts. “We are planting trees that represent sustainability, things that can stay for long. I believe we are all practising sustainability in this initiative we are doing today to show that the university, as well as the faculties, are in line with sustainability.” 

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept