Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Michael von Maltitz
Prof Michael von Maltitz challenges current science education paradigms at the inaugural NAS Research Conference, urging a shift from grade-driven learning to fostering critical thinking, curiosity, and human intelligence in the era of AI and the Fourth Industrial Revolution.

In his keynote address at the inaugural NAS Research Conference on 1 July 2025, Prof Michael von Maltitz delivered a wide-ranging and compelling critique of the current state of science education. Speaking to an audience of researchers and academics, he challenged assumptions about learning, assessment, and the role of artificial intelligence (AI) in higher education – offering both caution and practical guidance.

Prof Von Maltitz – from the Department of Mathematical Statistics and Actuarial Science at the University of the Free State (UFS) – opened with an overview of the industrial revolutions leading up to the current Fourth Industrial Revolution, characterised by artificial intelligence, connectivity, and data-driven automation. He warned against remaining entrenched in this phase of development, arguing that AI, while powerful, is not truly intelligent. “AI … is … artificial,” he said. “It is based on brute-forcing very large numbers of very basic operations at blazing speeds, linking external inputs to stored information. And so, it’s not intelligent. It’s just strong.”

He cautioned that the unchecked use of AI – driven by efficiency, not understanding – risks entrenching systems that prioritise ease and profit over education and well-being. “Everything is profit-driven at the moment. Everything, and I mean … everything. Really. It is this greed that keeps us firmly stuck in the Fourth Industrial Revolution.”

This, he suggested, makes the vision of a Fifth Industrial Revolution both necessary and urgent. The next phase, he argued, should be one that centres on sustainability, equity, human-machine collaboration – and critically – the development of human intelligence and critical thinking. “There should be something here about ‘building human intelligence’ or ‘critical thinking’. This would truly make the Fifth Industrial Revolution about bettering humanity.”

 

When the measure becomes the mission

Central to his address was the idea of ‘broken proxies’ – the phenomenon where a measurement designed to approximate a goal becomes the goal itself, distorting the original purpose. He illustrated this concept using examples ranging from GDP and crime statistics to social media algorithms, before turning to science education. Here, grades and degrees, once indicators of knowledge and progress, have become ends in themselves.

“The only things that are important to students are grades and degrees, because the incentives are linked to grades and degrees, and so, obviously, all effort will go towards grades and degrees.”

Prof Von Maltitz reflected on his own academic journey, describing how he excelled at exams and accumulated qualifications, yet absorbed little meaningful knowledge in the process. “I played the grades game, and nothing stuck in long-term memory, as is the case with many of our students today,” he said. “Why? Well, there were merit bursaries, degrees, and awards up for offer, not for learning, but for performing well.”

This system, he argued, incentivises performance over understanding and leaves students vulnerable to shortcuts – particularly through generative AI. “Under the assumption that rewards are linked to grades and not education, if you offer a student an assessment method that can be gamed … it will be gamed.”

Referencing a recent MIT study, he warned of the cognitive toll of over-reliance on AI. “They showed that, over four months, the AI users’ brains became systematically less active, especially when asked at the end of the study to do a brain-only essay. They had lower brain function in every area. In four months, they had become significantly ‘dumber’ than their counterparts in the other arms of the study.”

 

Rebuilding curiosity and competence

Despite this sobering analysis, the address was not without optimism. Prof Von Maltitz urged delegates to reimagine education by shifting away from content-heavy teaching and rigid assessment structures. He called for a renewed focus on curiosity, conscious incompetence, and lifelong learning. “Are our students able to self-assess, identify weaknesses and gaps in their knowledge bases, seek answers, and build their own learning paths? Are they humble enough to say, ‘I don’t know’, and curious enough to go and find the answers?”

To support this vision, he proposed four practical steps: redefining teaching goals, distilling module content to its essentials, focusing on graduate attributes such as critical thinking and communication, and reassessing how learning is measured. He encouraged alternatives to traditional exams, including portfolios, interviews, peer assessment, and real-world problem solving.

“We don’t have to pretend to teach students everything in a particular field – but rather we show them what is out there to be learned,” he said.

“Education should not be about teaching everything,” he concluded, “but about showing students what can be known, how to learn, and where to go next.”

 

About Prof Von Maltitz

Prof Von Maltitz is Associate Professor in the UFS Department of Mathematical Statistics and Actuarial Science. He has a long-standing connection with the university, having been a student at the UFS since the start of his BSc, which he completed with distinction in 2003. Over the following years, he obtained a BCom Honours in 2004, MCom in Economics in 2005, BSc Honours in Mathematical Statistics in 2006, MSc in Mathematical Statistics in 2007, and completed his PhD in 2015 while already lecturing.

His research interests span statistics education, sequential regression multiple imputation, incomplete data, and multivariate statistics. He is also known for his strong focus on student engagement and the re-engineering of teaching and learning. His extensive contributions to the field have been recognised through multiple awards for excellence in education.

News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept